Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(12): 14539-14550, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559942

RESUMEN

Liquefied petroleum gas (LPG) is widely used for its cleanliness and high efficiency in industry and city life. In order to improve the suppression effect on LPG explosion, a constant volume combustion bomb was used to investigate the synergistic influence of N2/ultrafine water mist on the explosion and combustion characteristics of 6% premixed LPG/air gas. The results showed that (1) the effect of a single ultrafine water mist on suppressing LPG explosion is unstable. When the concentration of ultrafine water mist is low, the flame acceleration in the initial stage of explosion is promoted, and when the ultrafine water mist with a mass fraction of 420 g/m3 is introduced, the maximum pressure rise rate increases. (2) The combination of N2/ultrafine water mist has a synergistic effect on LPG explosion. Compared to the individual suppression effects, the combination of N2/ultrafine water mist showed more effective suppression on the explosion pressure, flame propagation, and flame instability of LPG explosion. (3) Through the mechanism analysis, it is found that the combined action of N2/ ultrafine water mist can better reduce the mole fraction and ROP peak of active free radicals such as H, O, and OH by inhibiting the main reaction of generating H, O, and OH radicals during the explosion of LPG, resulting in the reduction of flame free radicals in the explosion system, thus effectively inhibiting the chain reaction of ignition and explosion of LPG. This research can provide guidance for a better understanding and implementation of gas-liquid two-phase suppression technology for LPG explosion.

2.
Phys Rev Lett ; 132(6): 060601, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38394571

RESUMEN

Quantum systems usually feature a rich multilevel structure with promising resources for developing superior quantum technologies compared with their binary counterpart. Single-shot readout of these high-dimensional quantum systems is essential for exploiting their potential. Although there have been various high-spin systems, the single-shot readout of the overall state of high-spin systems remains a challenging issue. Here we demonstrate a reliable single-shot readout of spin qutrit state in a low-temperature solid-state system utilizing a binary readout scheme. We achieve a single-shot readout of an electron spin qutrit associated with a single nitrogen-vacancy center in diamond with an average fidelity of 87.80%. We use this spin qutrit system to verify quantum contextuality, a fundamental test of quantum mechanics. We observe a violation of the noncontextual hidden variable inequality with the developed single-shot readout in contrast to the conventional binary readout. These results pave the way for developing quantum information processing based on spin qutrits.

3.
J Environ Manage ; 351: 119979, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181682

RESUMEN

Biochar is widely recognized as a soil amendment to reduce greenhouse gas emissions and enhance soil carbon storage in agroecosystems; however, the systematic focus on carbon balance and ecological benefits in cropping systems remains unclear in saline-alkali areas under water-saving irrigation. Here, a 2-yr field experiment with carbon footprint method was conducted to determine soil carbon budgets, biochar carbon efficiency performance, and the economic and ecological benefits of mulched drip-irrigated sorghum production, in an arid salinized region of Inner Mongolia, China. Corn straw-derived biochar dosages of 0 (CK), 15 (B15), 30 (B30), and 45 (B45) t hm-2 were just applied into the soil in the first crop growing season. A single application of biochar to soil significantly reduced CO2 emissions for the current and subsequent crop-growing seasons, with 13.1%, 16.7%, and 12.5% reductions for B15, B30, and B45, respectively. Compared with the non-biochar control plots, B15, B30, and B45 also increased NPP by 36.7%, 38.4%, and 27.1%, respectively. The actual effects on improving net carbon sequestration for B15, B30, and B45 in the first year were higher than those in the second year, with mean increases of 1.27, 1.47, and 1.36 times, respectively; however, the efficiencies of biochar for fixing carbon per biochar dosage input for B15 were 72.8% and 64.1% higher than those of B30 and B45, respectively. Net profits were significantly improved by 57.2-87.1% by biochar treatments. The environmental benefits of biochar carbon trading revenues for B15, B30, and B45 increased by 105.9%, 162.1%, and 109.6%, respectively. The minimum observation for carbon productivity and the maximum measurements for both the economic and ecological benefits were B15. The B15 also significantly increased sorghum yield and grain number. Results demonstrate that biochar application in the current growing season helps reduce soil carbon emissions, increases net carbon sequestration for current and subsequent sorghum agroecosystems, and enhances net profit and ecological benefits. The optimal positive synergistic effect was observed at a biochar application rate of 15 t hm-2 for reducing soil carbon emissions, increasing crop production, and improving the ecological environment.


Asunto(s)
Oryza , Sorghum , Agricultura/métodos , Granjas , Álcalis , Secuestro de Carbono , Carbón Orgánico , Carbono/análisis , Suelo , China
4.
Inflammopharmacology ; 32(1): 537-550, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37620622

RESUMEN

Sepsis is a complex, multifactorial syndrome characterized by a dysregulated host response to infection, leading to severe organ dysfunction and high mortality rates among critically ill patients. Hypovitaminosis C and vitamin C deficiency are frequently observed in septic patients, prompting interest in the potential therapeutic role of ascorbic acid. Although intravenous administration of ascorbic acid has been investigated in multiple clinical trials for sepsis treatment, the specific immunomodulatory mechanisms underlying its effects remain elusive. This study aimed to investigate the protective effects of high-dose ascorbic acid on experimental sepsis. Results show that intravenous administration of high-dose ascorbic acid (250 mg/kg) attenuated sepsis-induced organ dysfunctions in a cecal ligation and puncture (CLP)-induced septic mouse model. Ascorbic acid improved splenic cell apoptosis and increased the number of CD3+ T cells in septic mice induced by CLP. Furthermore, ascorbic acid downregulated PD-L1 expression in livers, reduced PD-1 expression in spleens, and inhibited the phosphorylation of STAT1 at Y701 in multiple organs of CLP-induced septic mice. The in vitro experiments also revealed that 800 µM ascorbic acid suppressed STAT1 phosphorylation and inhibited lipopolysaccharide (LPS) and IFN-γ-induced PD-L1 expression in macrophages. These findings suggest that ascorbic acid prevents sepsis-associated organ dysfunction through the p-STAT1/PD-L1 signaling pathway. Our study provides new insights into the potential therapeutic use of ascorbic acid in sepsis.


Asunto(s)
Antineoplásicos , Sepsis , Humanos , Animales , Ratones , Antígeno B7-H1 , Insuficiencia Multiorgánica , Fosforilación , Sepsis/tratamiento farmacológico , Ácido Ascórbico/farmacología , Factor de Transcripción STAT1
5.
Comput Biol Med ; 167: 107671, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37948967

RESUMEN

The design of orthodontic arch wires is a prerequisite for orthodontic treatment that determines the subsequent orthodontic effects. Current methods for designing orthodontic arch wires are often based on traditional manual techniques, which suffer from problems such as low accuracy and efficiency. To address these issues, a digital orthodontic arch wire design system has been developed using Unity 3D and C#. This system allows for the interactive adjustment and intelligent optimization of the shape of digital orthodontic arch wires. The developed system includes modules for curve design, contour construction, and collision detection of orthodontic arch wires, which can be customized interactively to meet the personalized needs of patients. In addition, an energy-constrained method is employed to optimize the shape of certain regions of the arch wire, which helps overcome distortion and interference issues caused by unreasonable interaction. The effectiveness of the developed system has been evaluated through experiments on digital design and optimization of orthodontic arch wires. Results demonstrate that the system can achieve accurate and efficient digital design of orthodontic arch wires, effectively reduce distortion, and is expected to improve the orthodontic effect.


Asunto(s)
Alambres para Ortodoncia , Humanos , Diseño de Equipo
6.
Am J Cancer Res ; 13(8): 3686-3704, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693152

RESUMEN

Although an increasing body of evidence supports the crucial role of the SEC24 Homolog D, COPII Coat Complex Component (SEC24D) gene in the initiation and progression of cancer, a comprehensive pan-cancer analysis of this gene is still lacking. In this study, we conducted an extensive investigation of SEC24D, aiming to elucidate its potential role and underlying mechanisms across multiple human tumors. Our analysis relied on data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. To validate our findings, we employed RNA sequencing (RNA-seq), targeted bisulfite sequencing (bisulfite-seq) molecular techniques. Our findings revealed elevated mRNA (Messenger RNA) and protein levels of SEC24D in different tumor tissues. However, the up-regulation of SEC24D was significantly correlated with shorter overall survival (OS), metastasis, and various clinical parameters in esophageal cancer (ESCA), lung adenocarcinoma (LUAD), and kidney renal papillary cell carcinoma (KIRP). Expression validation analysis via RNA-seq and targeted bisulfite-seq analyses, further confirmed the higher expression of SEC24D in LUAD cancer cell lines as compared to normal controls. The DNA methylation level of SEC24D was found to be decreased in ESCA, LUAD, and KIRP samples. DNA methylation analysis via bisulfite-seq analysis also validate the lower promoter methylation level of SE24D in LUAD cell lines relative to controls. Moreover, we observed a significant association between the elevated expression of SEC24D and the levels of infiltrating cells, such as B cells, neutrophils, macrophages, CD8+ T cells, and CD4+ T cells. Analysis of SEC24-related genes revealed that "Protein processing in endoplasmic reticulum, SNARE interaction in vesicular transport, Legionellosis, Pathogenic Escherichia coli infection" were mainly involved in the functional mechanism of SEC24D in ESCA, LUAD, and KIRP. Moreover, we also suggested a few valuable drugs (Acetaminophen, Acteoside, Cyclosporine, Polydatin, Estradiol, Estradiol, Quercetin) for treating ESCA, LUAD, and KIRP patients with respect to overexpressed SEC24D. To summarize, this comprehensive pan-cancer study investigated the association between SEC24D expression and clinical parameters in ESCA, LUAD, KIRP. The study provides valuable insights for further exploring the functional and therapeutic aspects of SEC24D and underscores its predictive significance in the carcinogenesis and prognosis of these specific cancer types.

8.
Heliyon ; 9(4): e15434, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37101633

RESUMEN

Background: Acute lung injury (ALI) remains a significant cause of morbidity and mortality in critically ill patients. Novel therapies interfering with the inflammatory response has been an area of focus for infectious disease treatment. Punicalin has shown strong anti-inflammatory and antioxidative properties; however, its effect in ALI has not been previously explored. Purpose: To investigate the effects of punicalin in lipopolysaccharide (LPS)-induced ALI and explore the underlying mechanisms. Methods: LPS (10 mg/kg) was administered intratracheally to create the ALI model in mice. Punicalin (10 mg/kg) was administered intraperitoneally shortly after LPS to investigate survival rate, lung tissue pathological injury, oxidative stress, levels of inflammatory cytokines in BALF and lung tissue, neutrophil extracellular trap (NET) formation and its effects on NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. In vitro studies were performed to evaluate the inflammatory cytokine release and NET formation in LPS-induced (1 µg/ml) and punicalin-treated mouse neutrophils derived from the bone marrow. Results: In vivo, punicalin reduced mortality, lung injury score, lung wet-to-dry (W/D) weight ratio, protein concentrations in BALF and malondialdehyde (MDA) levels in lung tissues, and increased superoxide dismutase (SOD) levels in lung tissues of LPS-induced ALI mice. Increased secretion of TNF-α, IL-1ß, and IL-6 in the BALF and the lungs of ALI mice was reversed by punicalin, whereas IL-10 was upregulated. Neutrophil recruitment and NET formation were also decreased by punicalin. Inhibition of NF-κB and MAPK signaling pathways was observed in punicalin-treated ALI mice. In vitro co-incubation with punicalin (50 µg/ml) inhibited the production of inflammatory cytokines and NET formation in LPS-treated neutrophils derived from mouse bone marrow. Conclusion: Punicalin reduces inflammatory cytokine production, prevents neutrophil recruitment and NET formation, and inhibits the activation of NF-κB and MAPK signaling pathways in LPS-induced ALI.

9.
ACS Omega ; 8(8): 7566-7574, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36872980

RESUMEN

The explosion risk of ethylene (C2H4) seriously hinders safe development of its production and processing. To reduce the harm caused by C2H4 explosion, an experimental study was conducted to assess the explosion inhibition characteristics of KHCO3 and KH2PO4 powders. The experiments were conducted based on the explosion overpressure and flame propagation of the 6.5% C2H4-air mixture in a 5 L semi-closed explosion duct. Both the physical and chemical inhibition characteristics of the inhibitors were mechanistically assessed. The results showed that the 6.5% C2H4 explosion pressure (P ex) decreases by increasing the concentration of KHCO3 or KH2PO4 powder. The inhibition effect of KHCO3 powder on the C2H4 system explosion pressure was better than that of the KH2PO4 powder under similar concentration conditions. Both powders significantly affected the flame propagation of the C2H4 explosion. Compared with KH2PO4 powder, KHCO3 powder had a better inhibition effect on the flame propagation speed, but its ability to reduce the flame luminance was less than KH2PO4 powder. Finally, the inhibition mechanism(s) of KHCO3 and KH2PO4 powders were revealed based on the powders' thermal characteristics and gas-phase reaction.

10.
Sensors (Basel) ; 22(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36560317

RESUMEN

We study a new type of path inference query against urban-scale video databases. Given a vehicle image query, our goal is to recover its historical trajectory from the footprints captured by surveillance cameras deployed across the road network. The problem is challenging because visual matching inherently suffers from object occlusion, low camera resolution, varying illumination conditions, and viewing angles. Furthermore, with limited computation resources, only a fraction of video frames can be ingested and indexed, causing severe data sparsity issues for visual matching. To support efficient and accurate trajectory recovery, we develop a select-and-refine framework in a heterogeneous hardware environment with both CPUs and GPUs. We construct a proximity graph from the top-k visually similar frames and propose holistic scoring functions based on visual and spatial-temporal coherence. To avoid enumerating all the paths, we also propose a coarse-grained scoring function with monotonic property to reduce search space. Finally, the derived path is refined by examining raw video frames to fill the missing cameras. For performance evaluation, we construct two largest-scale video databases generated from cameras deployed upon real road networks. Experimental results validate the efficiency and accuracy of our proposed trajectory recovery framework.

11.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36498855

RESUMEN

A leaf structure with high porosity is beneficial for lateral CO2 diffusion inside the leaves. However, the leaf structure of maize is compact, and it has long been considered that lateral CO2 diffusion is restricted. Moreover, lateral CO2 diffusion is closely related to CO2 pressure differences (ΔCO2). Therefore, we speculated that enlarging the ΔCO2 between the adjacent regions inside maize leaves may result in lateral diffusion when the diffusion resistance is kept constant. Thus, the leaf structure and gas exchange of maize (C4), cotton (C3), and other species were explored. The results showed that maize and sorghum leaves had a lower mesophyll porosity than cotton and cucumber leaves. Similar to cotton, the local photosynthetic induction resulted in an increase in the ΔCO2 between the local illuminated and the adjacent unilluminated regions, which significantly reduced the respiration rate of the adjacent unilluminated region. Further analysis showed that when the adjacent region in the maize leaves was maintained under a steady high light, the photosynthesis induction in the local regions not only gradually reduced the ΔCO2 between them but also progressively increased the steady photosynthetic rate in the adjacent region. Under field conditions, the ΔCO2, respiration, and photosynthetic rate of the adjacent region were also markedly changed by fluctuating light in local regions in the maize leaves. Consequently, we proposed that enlarging the ΔCO2 between the adjacent regions inside the maize leaves results in the lateral CO2 diffusion and supports photosynthesis in adjacent regions to a certain extent under fluctuating light.


Asunto(s)
Dióxido de Carbono , Zea mays , Dióxido de Carbono/farmacología , Luz , Fotosíntesis , Hojas de la Planta , Difusión
12.
Artículo en Inglés | MEDLINE | ID: mdl-36231463

RESUMEN

Research has shown that personality is associated with anxiety levels in the general population. However, little is known about the relationship between personality and preoperative anxiety and the subsequent health outcomes in patients undergoing surgery. Therefore, this review aimed to identify studies that explored the relationship between personality traits and preoperative anxiety, as well as their association with postoperative outcomes. Existing literature shows that anxiety may play an intermediary role in the relationship between personality and postoperative outcomes. Severe anxiety may partially explain the adverse effects of certain personality traits, such as neuroticism, on postoperative outcomes. However, the relationship between personality traits, preoperative anxiety, and postoperative outcomes remains unclear. Interventions such as clinical evaluation, preoperative counseling, and management strategies can be of great value in identifying and resolving patients' anxiety and negative emotions to improve postoperative outcomes.


Asunto(s)
Ansiedad , Depresión , Ansiedad/psicología , Trastornos de Ansiedad/psicología , Depresión/psicología , Humanos , Personalidad , Inventario de Personalidad
13.
ACS Omega ; 7(30): 26767-26776, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35936398

RESUMEN

Premixed hydrogen-air explosion experiments were carried out in a 1000 mm × 50 mm × 10 mm half-open narrow channel, concerning with the influences of equivalence ratio and ignition position on explosion behaviors. Experimental phenomena were different from explosion in large space. The results indicated that when ignited at the closed end of the channel, three overpressure peaks appeared, caused by the rupture of the film, Helmholtz Oscillation, and the flame-acoustic interaction, respectively. As the equivalence ratio of the hydrogen-air mixtures varied from 0.6 to 1.6, the peak overpressure first increased and then decreased. The maximum peak overpressure occurred at ϕ = 1.2. The hydrogen flame would develop into the plane tulip structure without the influence of the end wall. With the ignition position moved to the open end, overpressure wave and flame oscillated significantly. Compared with other ignition positions, the minimum value of P max was obtained at IP950. Based on the explosion behaviors in the narrow channel, it was concluded that the closer the ignition was to the open end, the easier the oscillation was to be formed, the smaller the explosion hazard was.

14.
Front Oncol ; 12: 958261, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965591

RESUMEN

Study objective: Prehabilitation is analogous to marathon training and includes preoperative preparation for exercise, as well as nutrition and psychology. However, evidence-based recommendations to guide prehabilitation before colorectal surgery are limited. We aimed to evaluate the effect of prehabilitation on the postoperative outcomes of patients undergoing colorectal surgery. Design: This study is a systematic review and meta-analysis. Methods: The PubMed, Embase, and Cochrane databases were searched for studies reporting the effect of prehabilitation strategies versus standard care or rehabilitation in patients undergoing colorectal surgery. The primary outcomes were overall postoperative complications and length of hospital stay (LOS), and the secondary outcome was functional capacity (measured using the 6-min walk test [6MWT]) at 4 and 8 weeks after surgery. Main results: Fifteen studies with 1,306 participants were included in this meta-analysis. The results showed no significant reduction in the number of overall postoperative complications (risk ratio = 1.02; 95% confidence interval [CI] = 0.79-1.31; p = 0.878) or LOS (standardized mean difference = 0.04; 95% CI = -0.11 to 0.20; p = 0.589) in patients who underwent colorectal surgery with or without prehabilitation strategy. Additionally, there were no significant differences in the functional capacity estimated using the 6MWT at 4 and 8 weeks postoperatively. Conclusions: Prehabilitation did not significantly affect the number of postoperative complications, LOS, or functional capacity of patients undergoing colorectal surgery. Whether prehabilitation should be recommended deserves further consideration. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=290108, identifier CRD42021290108.

16.
Phys Rev Lett ; 128(9): 090602, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35302812

RESUMEN

Following the rising interest in quantum information science, the extension of a heat engine to the quantum regime by exploring microscopic quantum systems has seen a boon of interest in the last decade. Although quantum coherence in the quantum system of the working medium has been investigated to play a nontrivial role, a complete understanding of the intrinsic quantum advantage of quantum heat engines remains elusive. We experimentally demonstrate that the quantum correlation between the working medium and the thermal bath is critical for the quantum advantage of a quantum Szilárd engine, where quantum coherence in the working medium is naturally excluded. By quantifying the nonclassical correlation through quantum steering, we reveal that the heat engine is quantum when the demon can truly steer the working medium. The average work obtained by taking different ways of work extraction on the working medium can be used to verify the real quantum Szilárd engine.

17.
J Hazard Mater ; 424(Pt C): 127580, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34736211

RESUMEN

Phosphorus flue dust (PFD) is a solid waste product from phosphorus (P) production that contains P and is enriched with gallium (Ga). The recovery of these valuable components not only protects the environment, but also reduces resource waste. This study aimed to develop a green and efficient method to recover P and enriched Ga from PFD. The effects of different parameters on the P leaching rate and Ga loss rate during Na2CO3 roasting and water leaching were investigated and optimized. The reaction mechanisms during the experiment were characterized, revealing that the P-containing compounds in PFD mainly transformed into water-soluble Na3PO4. Furthermore, the leaching rate of P reached 85.38%, while Ga was mainly concentrated in the residue and its loss rate was only about 1%. Ga content in the residue reached about 0.1%. An attempt was made to recover Na+ and PO43- from the aqueous solution by evaporative crystallization and XRD analysis showed that the main phase of the crystallization product was Na2HPO4. The proposed process is technically simple, only Na2CO3 is added and no hazardous substances are generated, and represents a new method for recovering P and enriching Ga from PFD.

18.
Front Pharmacol ; 12: 759220, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721042

RESUMEN

Fusidic acid (FA) is a natural tetracyclic triterpene isolated from fungi, which is clinically used for systemic and local staphylococcal infections, including methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci infections. FA and its derivatives have been shown to possess a wide range of pharmacological activities, including antibacterial, antimalarial, antituberculosis, anticancer, tumor multidrug resistance reversal, anti-inflammation, antifungal, and antiviral activity in vivo and in vitro. The semisynthesis, structural modification and biological activities of FA derivatives have been extensively studied in recent years. This review summarized the biological activities and structure-activity relationship (SAR) of FA in the last two decades. This summary can prove useful information for drug exploration of FA derivatives.

19.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 33(8): 919-921, 2021 Aug.
Artículo en Chino | MEDLINE | ID: mdl-34590556

RESUMEN

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection, of which the pathogenesis is complex and the mortality rate is high. However, current basic research is facing the dilemma of high heterogeneity and difficult translation to clinical practice. In-depth basic research is one of the most important ways to break through the "bottleneck" of clinical diagnosis and treatment of sepsis. The purpose of this review is to analyze the current progress and challenges in the field of basic research on sepsis, and look forward to the potential research directions in the future. Cell function, energy metabolism, microbiota, epigenetics and recovery period of sepsis may be the research priorities.


Asunto(s)
Microbiota , Sepsis , Humanos , Investigación , Sepsis/terapia
20.
Sci Adv ; 7(34)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34407942

RESUMEN

Principal component analysis (PCA) has been widely adopted to reduce the dimension of data while preserving the information. The quantum version of PCA (qPCA) can be used to analyze an unknown low-rank density matrix by rapidly revealing the principal components of it, i.e., the eigenvectors of the density matrix with the largest eigenvalues. However, because of the substantial resource requirement, its experimental implementation remains challenging. Here, we develop a resonant analysis algorithm with minimal resource for ancillary qubits, in which only one frequency-scanning probe qubit is required to extract the principal components. In the experiment, we demonstrate the distillation of the first principal component of a 4 × 4 density matrix, with an efficiency of 86.0% and a fidelity of 0.90. This work shows the speedup ability of quantum algorithm in dimension reduction of data and thus could be used as part of quantum artificial intelligence algorithms in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA