Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Integr Neurosci ; 23(5): 89, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38812380

RESUMEN

Neuropathic pain is a common pain syndrome, which seriously affects the quality of life of patients. The mechanism of neuropathic pain is complex. Peripheral tissue injury can trigger peripheral sensitization; however, what really plays a key role is the sensitization of the central nervous system. Central sensitization is a key factor in the perception of chronic pain. Central sensitization refers to the increased sensitivity of the central nervous system to pain treatment, which is related to the change of the functional connection mode of the neural network. The current study aims to reveal the basic molecular mechanisms of central sensitization, including the involvement of P2 purine X4 receptor and brain-derived neurotrophic factor. In terms of treatment, although there are drugs and physical therapy, the accuracy of targeting is limited and the efficacy needs to be further improved. Future therapeutic strategies may involve the development of new drugs designed to specifically inhibit the central sensitization process. This article focuses on the effector molecules involved in central sensitization, aiming to elucidate the pathogenesis of neuropathic pain and provide a basis for the development of more effective treatment models.


Asunto(s)
Sensibilización del Sistema Nervioso Central , Neuralgia , Neuralgia/terapia , Neuralgia/fisiopatología , Humanos , Sensibilización del Sistema Nervioso Central/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo
2.
Heliyon ; 10(6): e27472, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38496880

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) polymorphisms are associated with increased risk of type 2 diabetes mellitus (T2DM), obesity and dyslipidemia, which have been determined in various populations. Consistently, ACE2 knockout (ACE2 KO) mice display damaged energy metabolism in multiple tissues, especially the key metabolic tissues such as liver, skeletal muscle and epididymal white adipose tissue (eWAT) and show even more severe phenotype under high-fat diet (HFD) induced metabolic stress. However, the effects of ACE2 on global metabolomics profiling and the tissue sensitivity remain unclear. To understand how tissues independently and collectively respond to ACE2, we performed untargeted metabolomics in serum in ACE2 KO and control wild type (WT) mice both on normal diet (ND) and HFD, and in three key metabolic tissues (liver, skeletal muscle and eWAT) after HFD treatment. The results showed significant alterations in metabolic profiling in ACE2 KO mice. We identified 275 and 168 serum metabolites differing significantly between WT and ACE2 KO mice fed on ND and HFD, respectively. And the altered metabolites in the ACE2 KO group varied from 90 to 196 in liver, muscle and eWAT. The alterations in ND and HFD serum were most similar. Compared with WT mice, ACE2 KO mice showed an increase in N-phenylacetylglutamine (PAGln), methyl indole-3-acetate, 5-hydroxytryptophol, cholic acid, deoxycholic acid and 12(S)-HETE, while LPC (19:0) and LPE (16:1) decreased. Moreover, LPC (20:0), LPC (20:1) and PC (14:0e/6:0) were reduced in both ND and HFD serum, paralleling the decreases identified in HFD skeletal muscle. Interestingly, DL-tryptophan, indole and Gly-Phe decreased in both ND and HFD serum but were elevated in HFD liver of ACE2 KO mice. A low level of l-ergothioneine was observed among liver, muscle, and epididymal fat tissue of ACE2 KO mice. Pathway analysis demonstrated that different tissues exhibited different dysregulated metabolic pathways. In conclusion, these results revealed that ACE2 deficiency leads to an overall state of metabolic distress, which may provide a new insight into the underlying pathogenesis in metabolic disorders in both ACE2 KO mice and in patients with certain genetic variant of ACE2 gene.

3.
Am J Chin Med ; 52(1): 253-274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38351702

RESUMEN

Berberine (BBR) is a principal component of Rhizoma coptidis known for its therapeutic potential in treating diseases such as type 2 diabetes mellitus (T2DM) and obesity. Despite the trace levels of BBR in plasma, it's believed that its metabolites play a pivotal role in its biological activities. While BBR is recognized to promote GLP-1 production in intestinal L cells, the cytoprotective effects of its metabolites on these cells are yet to be explored. The present study investigates the effects of BBR metabolites on GLP-1 secretion and the underlying mechanisms. Our results revealed that, out of six BBR metabolites, berberrubine (BBB) and palmatine (PMT) significantly increased the production and glucose-stimulated secretion of GLP-1 in GLUTag cells. Notably, both BBB and PMT could facilitate GLP-1 and insulin secretion and enhance glucose tolerance in standard mice. Moreover, a single dose of PMT could markedly increase plasma GLP-1 and improve glucose tolerance in mice with obesity induced by a high-fat diet. In palmitic acid or TNF[Formula: see text]-treated GLUTag cells, BBB and PMT alleviated cell death, oxidative stress, and mitochondrial dysfunction. Furthermore, they could effectively reverse inflammation-induced inhibition of the Akt signaling pathway. In general, these insights suggest that the beneficial effects of orally administered BBR on GLP-1 secretion are largely attributed to the pharmacological activity of BBB and PMT by their above cytoprotective effects on L cells, which provide important ideas for stimulating GLP-1 secretion and the treatment of T2DM.


Asunto(s)
Berberina , Diabetes Mellitus Tipo 2 , Enfermedades Mitocondriales , Ratones , Animales , Berberina/farmacología , Berberina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Péptido 1 Similar al Glucagón/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/uso terapéutico , Glucosa , Obesidad/metabolismo , Estrés Oxidativo , Enfermedades Mitocondriales/tratamiento farmacológico
4.
Eur J Pharmacol ; 926: 175040, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35598846

RESUMEN

Extensive studies have shown that the increasing brown adipose tissue (BAT) mass/activity possesses a strong ability to prevent obesity and its related complications. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signal pathway is known to play a role in adipocyte differentiation and development. However, its impact on thermogenic properties of mature brown adipocytes has not yet been clarified. Nifuroxazide (NFX), a potent inhibitor of STAT3, has received widespread attention due to its alternative anti-tumor and anti-inflammatory effects. Herein, we report that NFX induces lipolysis with subsequent downregulation of ACCα and FAS, while ATGL and pHSL levels are elevated in mature brown adipocytes. Furthermore, NFX treatment promotes the mitochondrial respiration of mature brown adipocytes, as evidenced by increased expression of thermogenic transcriptional factors and mitochondrial content. In addition, it also alleviates the IL-6 and TNFα inhibition on brown thermogenic programming via suppressing the STAT3/NF-κB/IL-6 signaling pathway. In general, these findings suggest that the blockade of the JAK/STAT3 pathway by NFX has a pro-thermogenic effect on mature brown adipocytes which opens new perspectives for NFX repurposing and potential therapeutic route to counteract obesity and related metabolic disorders.


Asunto(s)
Adipocitos Marrones , Hidroxibenzoatos , Reguladores del Metabolismo de Lípidos , Mitocondrias , Nitrofuranos , Factor de Transcripción STAT3 , Proteína Desacopladora 1 , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Humanos , Hidroxibenzoatos/farmacología , Interleucina-6/metabolismo , Reguladores del Metabolismo de Lípidos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nitrofuranos/farmacología , Obesidad/metabolismo , Obesidad/prevención & control , Obesidad/terapia , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Termogénesis/efectos de los fármacos , Proteína Desacopladora 1/biosíntesis , Proteína Desacopladora 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...