RESUMEN
BACKGROUND: Cadmium, a toxic metal, is widely encountered in diverse environmental contexts. Despite its pervasive exposure, there is limited research on the association between blood cadmium levels and depression, especially among females. This study aimed to investigate the relationship between blood cadmium levels and depression in adult women. METHODS: Data spanning 2005-2016 from the National Health and Nutrition Examination Survey (NHANES) were selected. Depression was diagnosed with the Patient Health Questionnaire (PHQ-9, score ≥10). Multiple logistic regression, multiple linear regression, and smoothed curve fitting were used to investigate the relationship between blood cadmium and depression. Subgroup analyses and interaction tests were performed to evaluate the stability of this association across populations. RESULTS: A total of 1,173 individuals were diagnosed with depression. The heightened prevalence of depression was linked to increased blood cadmium levels, a trend that persisted even after quartering blood cadmium. In the fully adjusted model, each incremental unit of blood cadmium was associated with a 33% rise in the prevalence of depression (OR = 1.33, 95% CI: 1.21-1.45). Participants in the highest quartile were 63% more likely to experience depression compared to those in the lowest quartile of blood cadmium (OR = 1.63, 95% CI: 1.15-2.30), and PHQ-9 score increased by 0.73 (ß = 0.73, 95% CI: 0.30-1.17). This positive association may be relevant to the general population. CONCLUSIONS: Blood cadmium levels are associated with depression in adult women, and this association varies by age and smoking status.
Asunto(s)
Cadmio , Depresión , Encuestas Nutricionales , Fumar , Humanos , Cadmio/sangre , Femenino , Estudios Transversales , Persona de Mediana Edad , Adulto , Depresión/epidemiología , Depresión/sangre , Estados Unidos/epidemiología , Adulto Joven , Fumar/epidemiología , Fumar/sangre , Anciano , Prevalencia , Factores de EdadRESUMEN
Background and aim: High-sensitivity C-reactive protein (hs-CRP) is a sensitive measure of low-grade inflammation and appears superior to conventional blood tests in assessing cardiovascular disease. The purpose of this investigation was to explore the link between high-sensitivity CRP and depressive symptoms among adults. Methods and results: Multiple logistic regression and smoothed curve fitting were used to investigate the association between hs-CRP and depressive symptoms based on data from the, 2017-2020 National Health and Nutrition Examination Survey (NHANES). Subgroup analyses and interaction tests were used to assess the stability of this relationship across populations. The study comprised 6,293 non-clinical participants, which included 549 individuals with depressive symptoms. The prevalence of depressive symptoms was found to increase with increasing levels of hs-CRP. This trend persisted even after quartetting hs-CRP levels. In the fully adjusted model, each unit increase in hs-CRP was associated with a 10% increase in the odds of depressive symptoms (OR=1.10,95%CI:1.01-1.21). Participants in the highest quartile of hs-CRP had a 39% higher prevalence of depressive symptoms compared to those in the lowest quartile (OR=1.39,95%CI:1.01-1.92). Additionally, this positive correlation was more pronounced in men. Conclusions: In adult Americans, there exists a positive association between elevated hs-CRP levels and depressive symptoms, with a more prominent manifestation of this association observed in males.
RESUMEN
The Stimulator of Interferon Genes (STING) has a crucial role in mediating the immune response against cytosolic double-stranded DNA (dsDNA) and its activation is critically involved in various diseases. STING is synthesized, modified, and resides in the endoplasmic reticulum (ER), and its ER exit is intimately connected with its signaling. The ER, primarily known for its roles in protein folding, lipid synthesis, and calcium storage, has been identified as a pivotal platform for the regulation of a wide range of STING functions. In this review, we discuss the emerging factors that regulate STING in the ER and examine the interplay between STING signaling and ER pathways, highlighting the impacts of such regulations on immune responses and their potential implications in STING-related disorders.
Asunto(s)
Retículo Endoplásmico , Proteínas de la Membrana , Transducción de Señal , Humanos , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , AnimalesRESUMEN
Stimulator of interferon genes (STING) orchestrates the production of proinflammatory cytokines in response to cytosolic double-stranded DNA; however, the pathophysiological significance and molecular mechanism underlying the folding and maturation of nascent STING protein at the endoplasmic reticulum (ER) remain unknown. Here we report that the SEL1L-HRD1 protein complex-the most conserved branch of ER-associated degradation (ERAD)-is a negative regulator of the STING innate immunity by ubiquitinating and targeting nascent STING protein for proteasomal degradation in the basal state. SEL1L or HRD1 deficiency in macrophages specifically amplifies STING signalling and immunity against viral infection and tumour growth. Mechanistically, nascent STING protein is a bona fide substrate of SEL1L-HRD1 in the basal state, uncoupled from ER stress or its sensor inositol-requiring enzyme 1α. Hence, our study not only establishes a key role of SEL1L-HRD1 ERAD in innate immunity by limiting the size of the activable STING pool, but identifies a regulatory mechanism and therapeutic approach to targeting STING.
Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas/metabolismo , Retículo Endoplásmico/metabolismo , Inmunidad InnataRESUMEN
Stem cells need to be protected from genotoxic and proteotoxic stress to maintain a healthy pool throughout life1-3. Little is known about the proteostasis mechanism that safeguards stem cells. Here we report endoplasmic reticulum-associated degradation (ERAD) as a protein quality checkpoint that controls the haematopoietic stem cell (HSC)-niche interaction and determines the fate of HSCs. The SEL1L-HRD1 complex, the most conserved branch of ERAD4, is highly expressed in HSCs. Deletion of Sel1l led to niche displacement of HSCs and a complete loss of HSC identity, and allowed highly efficient donor-HSC engraftment without irradiation. Mechanistic studies identified MPL, the master regulator of HSC identity5, as a bona fide ERAD substrate that became aggregated in the endoplasmic reticulum following ERAD deficiency. Restoration of MPL signalling with an agonist partially rescued the number and reconstitution capacity of Sel1l-deficient HSCs. Our study defines ERAD as an essential proteostasis mechanism to safeguard a healthy stem cell pool by regulating the stem cell-niche interaction.
Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Células Madre Hematopoyéticas/citología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Receptores de Trombopoyetina/metabolismo , Nicho de Células Madre , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Femenino , Células Madre Hematopoyéticas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Trombopoyetina/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
Depletion of fat-resident regulatory T cells (Tregs) and group 2 innate lymphoid cells (ILC2s) has been causally linked to obesity-associated insulin resistance. However, the molecular nature of the pathogenic signals suppress adipose Tregs and ILC2s in obesity remains unknown. Here, we identified the soluble isoform of interleukin (IL)-33 receptor ST2 (sST2) as an obesity-induced adipokine that attenuates IL-33 signaling and disrupts Treg/ILC2 homeostasis in adipose tissue, thereby exacerbates obesity-associated insulin resistance in mice. We demonstrated sST2 is a target of TNFα signaling in adipocytes that is countered by Zbtb7b. Fat-specific ablation of Zbtb7b augments adipose sST2 gene expression, leading to diminished fat-resident Tregs/ILC2s, more pronounced adipose tissue inflammation and fibrosis, and impaired glucose homeostasis in mice. Mechanistically, Zbtb7b suppresses NF-κB activation in response to TNFα through destabilizing IκBα. These findings uncover an adipokine-immune signaling pathway that is engaged in obesity to drive the pathological changes of the immunometabolic landscape.
Asunto(s)
Resistencia a la Insulina , Adipoquinas/metabolismo , Tejido Adiposo/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Inmunidad Innata , Linfocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Factores de Transcripción/metabolismo , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
ß Cell apoptosis and dedifferentiation are 2 hotly debated mechanisms underlying ß cell loss in type 2 diabetes; however, the molecular drivers underlying such events remain largely unclear. Here, we performed a side-by-side comparison of mice carrying ß cell-specific deletion of ER-associated degradation (ERAD) and autophagy. We reported that, while autophagy was necessary for ß cell survival, the highly conserved Sel1L-Hrd1 ERAD protein complex was required for the maintenance of ß cell maturation and identity. Using single-cell RNA-Seq, we demonstrated that Sel1L deficiency was not associated with ß cell loss, but rather loss of ß cell identity. Sel1L-Hrd1 ERAD controlled ß cell identity via TGF-ß signaling, in part by mediating the degradation of TGF-ß receptor 1. Inhibition of TGF-ß signaling in Sel1L-deficient ß cells augmented the expression of ß cell maturation markers and increased the total insulin content. Our data revealed distinct pathogenic effects of 2 major proteolytic pathways in ß cells, providing a framework for therapies targeting distinct mechanisms of protein quality control.
Asunto(s)
Retículo Endoplásmico , Células Secretoras de Insulina/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas/metabolismo , Proteolisis , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adulto , Anciano , Animales , Supervivencia Celular/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Femenino , Células HEK293 , Humanos , Células Secretoras de Insulina/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Proteínas/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
Aberrant T cell development is a pivotal risk factor for autoimmune disease; however, the underlying molecular mechanism of T cell overactivation is poorly understood. Here, we identified NF-κB-inducing kinase (NIK) and IkB kinase α (IKKα) in thymic epithelial cells (TECs) as essential regulators of T cell development. Mouse TEC-specific ablation of either NIK or IKKα resulted in severe T cell-mediated inflammation, injury, and fibrosis in the liver and lung, leading to premature death within 18 d of age. NIK or IKKα deficiency abrogated medullary TEC development, and led to breakdown of central tolerance, production of autoreactive T cells, and fatal autoimmune destruction in the liver and lung. TEC-specific ablation of NIK or IKKα also impaired thymic T cell development from the double-negative through the double-positive stages and inhibited peripheral B cell development. These results unravel a hitherto unrecognized essential role of TEC-intrinsic NIK and IKKα pathways in autoimmunity and T cell-instigated chronic liver and lung diseases.
Asunto(s)
Autoinmunidad/inmunología , Quinasa I-kappa B/fisiología , Inflamación/inmunología , Hígado/inmunología , Pulmón/inmunología , Proteínas Serina-Treonina Quinasas/fisiología , Timo/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Diferenciación Celular , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Homeostasis , Inflamación/metabolismo , Inflamación/patología , Hígado/metabolismo , Hígado/patología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Timo/metabolismo , Timo/patología , Quinasa de Factor Nuclear kappa BRESUMEN
Cell-cell communication via ligand-receptor signaling is a fundamental feature of complex organs. Despite this, the global landscape of intercellular signaling in mammalian liver has not been elucidated. Here we perform single-cell RNA sequencing on non-parenchymal cells isolated from healthy and NASH mouse livers. Secretome gene analysis revealed a highly connected network of intrahepatic signaling and disruption of vascular signaling in NASH. We uncovered the emergence of NASH-associated macrophages (NAMs), which are marked by high expression of triggering receptors expressed on myeloid cells 2 (Trem2), as a feature of mouse and human NASH that is linked to disease severity and highly responsive to pharmacological and dietary interventions. Finally, hepatic stellate cells (HSCs) serve as a hub of intrahepatic signaling via HSC-derived stellakines and their responsiveness to vasoactive hormones. These results provide unprecedented insights into the landscape of intercellular crosstalk and reprogramming of liver cells in health and disease.
Asunto(s)
Comunicación Celular/genética , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Análisis de Secuencia de ARN , Animales , Reprogramación Celular/genética , Modelos Animales de Enfermedad , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Humanos , Ligandos , Hígado/patología , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Transducción de Señal/genética , Análisis de la Célula IndividualRESUMEN
Consumption of a high-energy Western diet triggers mild adaptive ß cell proliferation to compensate for peripheral insulin resistance; however, the underlying molecular mechanism remains unclear. In the present study we show that the toll-like receptors TLR2 and TLR4 inhibited the diet-induced replication of ß cells in mice and humans. The combined, but not the individual, loss of TLR2 and TLR4 increased the replication of ß cells, but not that of α cells, leading to enlarged ß cell area and hyperinsulinemia in diet-induced obesity. Loss of TLR2 and TLR4 increased the nuclear abundance of the cell cycle regulators cyclin D2 and Cdk4 in a manner dependent on the signaling mediator Erk. These data reveal a regulatory mechanism controlling the proliferation of ß cells in diet-induced obesity and suggest that selective targeting of the TLR2/TLR4 pathways may reverse ß cell failure in patients with diabetes.
Asunto(s)
Células Secretoras de Insulina/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Animales , Proliferación Celular , Ciclina D2/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Humanos , Insulina/sangre , Insulina/metabolismo , Células Secretoras de Insulina/ultraestructura , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Ratones Noqueados , Complejos Multiproteicos/metabolismo , Obesidad/tratamiento farmacológico , Parabiosis , Unión Proteica , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismoRESUMEN
Cell encapsulation has been shown to hold promise for effective, long-term treatment of type 1 diabetes (T1D). However, challenges remain for its clinical applications. For example, there is an unmet need for an encapsulation system that is capable of delivering sufficient cell mass while still allowing convenient retrieval or replacement. Here, we report a simple cell encapsulation design that is readily scalable and conveniently retrievable. The key to this design was to engineer a highly wettable, Ca2+-releasing nanoporous polymer thread that promoted uniform in situ cross-linking and strong adhesion of a thin layer of alginate hydrogel around the thread. The device provided immunoprotection of rat islets in immunocompetent C57BL/6 mice in a short-term (1-mo) study, similar to neat alginate fibers. However, the mechanical property of the device, critical for handling and retrieval, was much more robust than the neat alginate fibers due to the reinforcement of the central thread. It also had facile mass transfer due to the short diffusion distance. We demonstrated the therapeutic potential of the device through the correction of chemically induced diabetes in C57BL/6 mice using rat islets for 3 mo as well as in immunodeficient SCID-Beige mice using human islets for 4 mo. We further showed, as a proof of concept, the scalability and retrievability in dogs. After 1 mo of implantation in dogs, the device could be rapidly retrieved through a minimally invasive laparoscopic procedure. This encapsulation device may contribute to a cellular therapy for T1D because of its retrievability and scale-up potential.
Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/fisiología , Alginatos , Animales , Diabetes Mellitus Experimental/terapia , Dimetilformamida , Perros , Ácido Glucurónico , Ácidos Hexurónicos , Humanos , Hidrogeles , Ratones , Ratones SCID , Polimetil Metacrilato , RatasRESUMEN
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a principal mechanism that targets ER-associated proteins for cytosolic proteasomal degradation. Here, our data demonstrate a critical role for the Sel1L-Hrd1 complex, the most conserved branch of ERAD, in early B cell development. Loss of Sel1L-Hrd1 ERAD in B cell precursors leads to a severe developmental block at the transition from large to small pre-B cells. Mechanistically, we show that Sel1L-Hrd1 ERAD selectively recognizes and targets the pre-B cell receptor (pre-BCR) for proteasomal degradation in a BiP-dependent manner. The pre-BCR complex accumulates both intracellularly and at the cell surface in Sel1L-deficient pre-B cells, leading to persistent pre-BCR signaling and pre-B cell proliferation. This study thus implicates ERAD mediated by Sel1L-Hrd1 as a key regulator of B cell development and reveals the molecular mechanism underpinning the transient nature of pre-BCR signaling.
Asunto(s)
Linfocitos B/citología , Linfocitos B/metabolismo , Puntos de Control del Ciclo Celular , Degradación Asociada con el Retículo Endoplásmico , Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Antígenos CD19/metabolismo , Ciclo Celular , Tamaño de la Célula , Péptidos y Proteínas de Señalización Intracelular , Ratones Endogámicos C57BL , Células Precursoras de Linfocitos B/metabolismo , Células Precursoras de Linfocitos B/patología , Receptores de Antígenos de Linfocitos B , Especificidad por Sustrato , Factor de Transcripción CHOP/metabolismoRESUMEN
Inflammatory bowel disease (IBD) is an incurable chronic idiopathic disease that drastically decreases quality of life. Endoplasmic reticulum (ER)-associated degradation (ERAD) is responsible for the clearance of misfolded proteins; however, its role in disease pathogenesis remains largely unexplored. Here we show that the expression of SEL1L and HRD1, the most conserved branch of mammalian ERAD, is significantly reduced in ileal Crohn's disease (CD). Consistent with this observation, laboratory mice with enterocyte-specific Sel1L deficiency (Sel1L(ΔIEC)) develop spontaneous enteritis and have increased susceptibility to Toxoplasma gondii-induced ileitis. This is associated with profound defects in Paneth cells and a disproportionate increase of Ruminococcus gnavus, a mucolytic bacterium with known association with CD. Surprisingly, whereas both ER stress sensor IRE1α and effector CHOP are activated in the small intestine of Sel1L(ΔIEC) mice, they are not solely responsible for ERAD deficiency-associated lesions seen in the small intestine. Thus our study points to a constitutive role of Sel1L-Hrd1 ERAD in epithelial cell biology and the pathogenesis of intestinal inflammation in CD.
Asunto(s)
Enterocitos/metabolismo , Proteínas/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis , Duodeno/metabolismo , Duodeno/patología , Estrés del Retículo Endoplásmico , Degradación Asociada con el Retículo Endoplásmico , Endorribonucleasas/fisiología , Enteritis/metabolismo , Enteritis/patología , Femenino , Microbioma Gastrointestinal , Haploinsuficiencia , Homeostasis , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Células de Paneth/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Factor de Transcripción CHOP/fisiologíaRESUMEN
Endoplasmic reticulum (ER)-associated degradation (ERAD) represents a principle quality control mechanism to clear misfolded proteins in the ER; however, its physiological significance and the nature of endogenous ERAD substrates remain largely unexplored. Here we discover that IRE1α, the sensor of the unfolded protein response (UPR), is a bona fide substrate of the Sel1L-Hrd1 ERAD complex. ERAD-mediated IRE1α degradation occurs under basal conditions in a BiP-dependent manner, requires both the intramembrane hydrophilic residues of IRE1α and the lectin protein OS9, and is attenuated by ER stress. ERAD deficiency causes IRE1α protein stabilization, accumulation and mild activation both in vitro and in vivo. Although enterocyte-specific Sel1L-knockout mice (Sel1L(ΔIEC)) are viable and seem normal, they are highly susceptible to experimental colitis and inflammation-associated dysbiosis, in an IRE1α-dependent but CHOP-independent manner. Hence, Sel1L-Hrd1 ERAD serves a distinct, essential function in restraint of IRE1α signalling in vivo by managing its protein turnover.
Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/genética , Endorribonucleasas/genética , Proteínas Serina-Treonina Quinasas/genética , Respuesta de Proteína Desplegada/genética , Animales , Secuencia de Bases , Western Blotting , Células Cultivadas , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Enterocitos/metabolismo , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lectinas/genética , Lectinas/metabolismo , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/genética , Proteínas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
CD1d-dependent NKT cells have been extensively studied; however, the function of CD8(+)NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8(+)NKT-like cells, which express both T cell markers (TCRß and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8(+)NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8(+)NKT-like cell development is normal in CD1d(-/-) mice, which suggests that CD8(+)NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8(+)NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8(+)NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8(+)NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens.
Asunto(s)
Antígenos de Superficie/inmunología , Linfocitos T CD8-positivos/inmunología , Citotoxicidad Inmunológica , Células Dendríticas/inmunología , Inmunomodulación , Células T Asesinas Naturales/inmunología , Subgrupos de Linfocitos T/inmunología , Animales , Linfocitos T CD8-positivos/metabolismo , Células Dendríticas/metabolismo , Inmunización , Inmunofenotipificación , Recuento de Linfocitos , Ratones , Células T Asesinas Naturales/metabolismo , Fenotipo , Receptores de Antígenos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/metabolismoRESUMEN
Cell encapsulation holds enormous potential to treat a number of hormone deficient diseases and endocrine disorders. We report a simple and universal approach to fabricate robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) with macroscopic dimensions. In this design, we take advantage of the well-known capillary action that holds wetting liquid in porous media. By impregnating the highly porous electrospun nanofiber membranes of pre-made tubular or planar devices with hydrogel precursor solutions and subsequent crosslinking, we obtained various nanofiber-enabled hydrogel devices. This approach is broadly applicable and does not alter the water content or the intrinsic chemistry of the hydrogels. The devices retained the properties of both the hydrogel (e.g. the biocompatibility) and the nanofibers (e.g. the mechanical robustness). The facile mass transfer was confirmed by encapsulation and culture of different types of cells. Additional compartmentalization of the devices enabled paracrine cell co-cultures in single implantable devices. Lastly, we provided a proof-of-concept study on potential therapeutic applications of the devices by encapsulating and delivering rat pancreatic islets into chemically-induced diabetic mice. The diabetes was corrected for the duration of the experiment (8 weeks) before the implants were retrieved. The retrieved devices showed minimal fibrosis and as expected, live and functional islets were observed within the devices. This study suggests that the design concept of NEEDs may potentially help to overcome some of the challenges in the cell encapsulation field and therefore contribute to the development of cell therapies in future.
Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/instrumentación , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Nanofibras/química , Animales , Línea Celular Tumoral , Humanos , Trasplante de Islotes Pancreáticos , Masculino , Fenómenos Mecánicos , Ratones Endogámicos C57BL , Nanofibras/ultraestructura , Ratas Sprague-DawleyRESUMEN
Chronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here, we show that chronic intake of a high-fat diet (HFD), not a low-fat diet, leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors 2 and 4 (DKO). Diet-induced pulmonary lesions are blocked by antibiotic treatment and are transmissible to wild-type mice upon either cohousing or fecal transplantation, pointing to the existence of bacterial pathogens. Indeed, diet and innate deficiency exert significant impact on gut microbiota composition. Thus, chronic intake of HFD promotes severe pulmonary damage and mortality in DKO mice in part via gut dysbiosis, a finding that may be important for immunodeficient patients, particularly those on chemotherapy or radiotherapy, where gut-microbiota-caused conditions are often life threatening.
Asunto(s)
Dieta Alta en Grasa/efectos adversos , Disbiosis/complicaciones , Enfermedades Pulmonares/etiología , Microbiota , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 4/deficiencia , Animales , Disbiosis/etiología , Disbiosis/inmunología , Inmunidad Innata , Intestinos/inmunología , Intestinos/microbiología , Enfermedades Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genéticaRESUMEN
Suppressor/Enhancer of Lin-12-like (Sel1L) is an adaptor protein for the E3 ligase hydroxymethylglutaryl reductase degradation protein 1 (Hrd1) involved in endoplasmic reticulum-associated degradation (ERAD). Sel1L's physiological importance in mammalian ERAD, however, remains to be established. Here, using the inducible Sel1L knockout mouse and cell models, we show that Sel1L is indispensable for Hrd1 stability, ER homeostasis, and survival. Acute loss of Sel1L leads to premature death in adult mice within 3 wk with profound pancreatic atrophy. Contrary to current belief, our data show that mammalian Sel1L is required for Hrd1 stability and ERAD function both in vitro and in vivo. Sel1L deficiency disturbs ER homeostasis, activates ER stress, attenuates translation, and promotes cell death. Serendipitously, using a biochemical approach coupled with mass spectrometry, we found that Sel1L deficiency causes the aggregation of both small and large ribosomal subunits. Thus, Sel1L is an indispensable component of the mammalian Hrd1 ERAD complex and ER homeostasis, which is essential for protein translation, pancreatic function, and cellular and organismal survival.
Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Homeostasis , Mamíferos/metabolismo , Proteínas/metabolismo , Animales , Atrofia , Técnicas de Cultivo de Célula , Muerte Celular , Proliferación Celular , Supervivencia Celular , Retículo Endoplásmico/ultraestructura , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Páncreas Exocrino/anomalías , Páncreas Exocrino/metabolismo , Páncreas Exocrino/patología , Páncreas Exocrino/ultraestructura , Polirribosomas/metabolismo , Biosíntesis de Proteínas , Estabilidad Proteica , Vesículas Secretoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Respuesta de Proteína DesplegadaRESUMEN
The transcriptional co-regulator host cell factor-1 (HCF-1) plays critical roles in promoting cell cycle progression in diverse cell types, and in maintaining self-renewal of embryonic stem cells, but its role in pancreatic ß-cell function has not been investigated. Immunhistochemistry of mouse pancreas revealed nuclear expression of HCF-1 in pancreatic islets. Reducing HCF-1 expression in the INS-1 pancreatic ß-cell line resulted in reduced cell proliferation, reduced glucose-stimulated insulin secretion, and reduced expression of the critical ß-cell transcription factor Pdx1. HCF-1 is a known co-activator of the E2F1 transcription factor, and loss of E2F1 results in pancreatic ß-cell dysfunction and reduced expression of Pdx1. Therefore we wondered whether HCF-1 might be required for E2F1 regulation of Pdx1. Chromatin immunoprecipitation experiments revealed that HCF-1 and E2F1 co-localize to the Pdx1 promoter. These results indicate that HCF-1 represents a novel transcriptional regulator required for maintaining pancreatic ß-cell function.
Asunto(s)
Factor C1 de la Célula Huésped/genética , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Animales , Línea Celular , Proliferación Celular/genética , Cromatina/genética , Cromatina/metabolismo , Factor de Transcripción E2F1/genética , Regulación de la Expresión Génica , Glucosa/metabolismo , Proteínas de Homeodominio/genética , Factor C1 de la Célula Huésped/metabolismo , Secreción de Insulina , Ratones , Regiones Promotoras Genéticas , Ratas , Transactivadores/genéticaRESUMEN
Hyperglycemia is a result of impaired insulin action on glucose production and disposal, and a major target of antidiabetic therapies. The study of insulin-independent regulatory mechanisms of glucose metabolism may identify new strategies to lower blood sugar levels. Here we demonstrate an unexpected metabolic function for IL-13 in the control of hepatic glucose production. IL-13 is a Th2 cytokine known to mediate macrophage alternative activation. Genetic ablation of Il-13 in mice (Il-13-/-) resulted in hyperglycemia, which progressed to hepatic insulin resistance and systemic metabolic dysfunction. In Il-13-/- mice, upregulation of enzymes involved in hepatic gluconeogenesis was a primary event leading to dysregulated glucose metabolism. IL-13 inhibited transcription of gluconeogenic genes by acting directly on hepatocytes through Stat3, a noncanonical downstream effector. Consequently, the ability of IL-13 to suppress glucose production was abolished in liver cells lacking Stat3 or IL-13 receptor α1 (Il-13rα1), which suggests that the IL-13Rα1/Stat3 axis directs IL-13 signaling toward metabolic responses. These findings extend the implication of a Th1/Th2 paradigm in metabolic homeostasis beyond inflammation to direct control of glucose metabolism and suggest that the IL-13/Stat3 pathway may serve as a therapeutic target for glycemic control in insulin resistance and type 2 diabetes.