Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 924: 171608, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38492588

RESUMEN

The ubiquitous presence of emerging contaminants (ECs) in the environment and their associated adverse effects has raised concerns about their potential risks. The increased toxicity observed during the environmental transformation of ECs is often linked to the formation of their transformation products (TPs). However, comprehension of their formation mechanisms and contribution to the increased toxicity remains an unresolved challenge. To address this gap, by combining quantum chemical and molecular simulations with photochemical experiments in water, this study investigated the formation of TPs and their molecular interactions related to estrogenic effect using the photochemical degradation of benzylparaben (BZP) preservative as a representative example. A non-targeted analysis was carried out and three previously unknown TPs were identified during the transformation of BZP. Noteworthy, two of these novel TPs, namely oligomers BZP-o-phenol and BZP-m-phenol, exhibited higher estrogenic activities compared to the parent BZP. Their IC50 values of 0.26 and 0.50 µM, respectively, were found to be lower than that of the parent BZP (6.42 µM). The binding free energies (ΔGbind) of BZP-o-phenol and BZP-m-phenol (-29.71 to -23.28 kcal·mol-1) were lower than that of the parent BZP (-20.86 kcal·mol-1), confirming their stronger binding affinities toward the estrogen receptor (ER) α-ligand binding domain. Subsequent analysis unveiled that these hydrophobic residues contributed most favorably to ER binding, with van der Waals interactions playing a significant role. In-depth examination of the formation mechanisms indicated that these toxic TPs primarily originated from the successive cleavage of ester bonds (OCH2C6H5 and COO group), followed by their combination with BZP*. This study provides valuable insight into the mechanisms underlying the formation of toxic TPs and their binding interactions causing the endocrine-disrupting effects. It offers a crucial framework for elucidating the toxicological patterns of ECs with similar structures.


Asunto(s)
Estrógenos , Contaminantes Químicos del Agua , Estrógenos/toxicidad , Parabenos/toxicidad , Parabenos/análisis , Fotólisis , Conservadores Farmacéuticos/toxicidad , Contaminantes Químicos del Agua/análisis
2.
Environ Pollut ; 346: 123684, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428790

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs), known for their health risks, are prevalent in the environment, with the coking industry being a major source of their emissions. To bridge the knowledge gap concerning the relationship between environmental and dietary PAH exposure, we explore this complex interplay by investigating the dietary exposure characteristics of 24 PAHs within a typical Chinese coking plant and their association with environmental pollution. Our research revealed Nap and Fle as primary dietary contaminants, emphasizing the significant influence of soil and atmospheric pollution on PAH exposure. We subjected our data to non-metric multidimensional scaling (NMDS), Spearman correlation analysis, Lasso regression, and Weighted Quantile Sum (WQS) regression to delve into this multifaceted phenomenon. NMDS reveals that dietary PAH exposure, especially within the high molecular weight (HMW) group, is common both within and around the coking plant. This suggests that meals prepared within the plant may be contaminated, posing health risks to coking plant workers. Furthermore, our assessment of dietary exposure risk highlights Nap and Fle as the primary dietary contaminants, with BaP and DahA raising concerns due to their higher carcinogenic potential. Our findings indicate that dietary exposure often exceeds acceptable limits, particularly for coking plant workers. Correlation analyses uncover the dominant roles of soil and atmospheric pollution in shaping dietary PAH exposure. Soil contamination significantly impacts specific PAHs, while atmospheric pollution contributes to others. Additionally, WQS regression emphasizes the substantial influence of soil and drinking water on dietary PAHs. In summary, our study sheds light on the dietary exposure characteristics of PAHs in a typical Chinese coking plant and their intricate interplay with environmental factors. These findings underscore the need for comprehensive strategies to mitigate PAH exposure so as to safeguard both human health and the environment in affected regions.


Asunto(s)
Coque , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Humanos , Coque/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Exposición Dietética/análisis , Monitoreo del Ambiente , Contaminantes del Suelo/análisis , Medición de Riesgo , Suelo , China
3.
J Environ Sci (China) ; 141: 225-234, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38408823

RESUMEN

Acetylacetone (AcAc) is a typical class of ß-diketones with broad industrial applications due to the property of the keto-enol isomers, but its isomerization and chemical reactions at the air-droplet interface are still unclear. Hence, using combined molecular dynamics and quantum chemistry methods, the heterogeneous chemistry of AcAc at the air-droplet interface was investigated, including the attraction of AcAc isomers by the droplets, the distribution of isomers at the air-droplet interface, and the hydration reactions of isomers at the air-droplet interface. The results reveal that the preferential orientation of two AcAc isomers (keto- and enol-AcAc) to accumulate and accommodate at the acidic air-droplet interface. The isomerization of two AcAc isomers at the acidic air-droplet interface is more favorable than that at the neutral air-droplet interface because the "water bridge" structure is destroyed by H3O+, especially for the isomerization from keto-AcAc to enol-AcAc. At the acidic air-droplet interface, the carbonyl or hydroxyl O-atoms of two AcAc isomers display an energetical preference to hydration. Keto-diol is the dominant products to accumulate at the air-droplet interface, and excessive keto-diol can enter the droplet interior to engage in the oligomerization. The photooxidation reaction of AcAc will increase the acidity of the air-droplet interface, which indirectly facilitate the uptake and formation of more keto-diol. Our results provide an insight into the heterogeneous chemistry of ß-diketones and their influence on the environment.


Asunto(s)
Pentanonas , Agua , Isomerismo , Pentanonas/química , Agua/química
4.
Sci Total Environ ; 919: 170836, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38346658

RESUMEN

Same as other bay areas, the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is also suffering atmospheric composite pollution. Even a series of atmospheric environment management policies have been conducted to win the "blue sky defense battle", the atmospheric secondary pollutants (e.g., O3) originated from oxygenated volatile organic compounds (OVOCs) still threaten the air quality in GBA. However, there lacks a systematic summary on the emission, formation, pollution and environmental effects of OVOCs in this region for further air quality management. This review focused on the researches related to OVOCs in GBA, including their pollution characteristics, detection methods, source distributions, secondary formations, and impacts on the atmosphere. Pollution profile of OVOCs in GBA revealed that the concentration percentage among total VOCs from Guangzhou and Dongguan cities exceeded 50 %, while methanol, formaldehyde, acetone, and acetaldehyde were the top four highest concentrated OVOCs. The detection technique on regional atmospheric OVOCs (e.g., oxygenated organic molecules (OOMs)) underwent an evolution of off-line derivatization method, on-line spectroscopic method and on-line mass spectrometry method. The OVOCs in GBA were mainly from primary emissions (up to 80 %), including vehicle emissions and biomass combustion. The anthropogenic alkenes and aromatics in urban area, and natural isoprene in rural area also made a significant contribution to the secondary emission (e.g., photochemical formation) of OVOCs. About 20 % in average of ROx radicals was produced from photolysis of formaldehyde in comparison with O3, nitrous acid and rest OVOCs, while the reaction between OVOCs and free radical accelerated the NOx-O3 cycle, contributing to 15 %-60 % cumulative formation of O3 in GBA. Besides, the heterogeneous reactions of dicarbonyls generated 21 %-53 % of SOA. This review also provided suggestions for future research on OVOCs in terms of regional observation, analytical method and mechanistic study to support the development of a control and management strategy on OVOCs in GBA and China.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Compuestos Orgánicos Volátiles , Hong Kong , Macao , Compuestos Orgánicos Volátiles/análisis , Contaminantes Atmosféricos/análisis , Procesos Fotoquímicos , Monitoreo del Ambiente , Contaminación del Aire/análisis , China , Formaldehído/análisis , Ozono/análisis
5.
Environ Sci Technol ; 58(3): 1563-1576, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38183415

RESUMEN

Uncertain chemical mechanisms leading to brown carbon (BrC) formation affect the drivers of the radiative effects of aerosols in current climate predictions. Herein, the aqueous-phase reactions of methylglyoxal (MG) and typical reduced nitrogen species (RNSs) are systematically investigated by using combined quantum chemical calculations and laboratory experiments. Imines and diimines are identified from the mixtures of methylamine (MA) and ammonia (AM) with MG, but not from dimethylamine (DA) with the MG mixture under acidic conditions, because deprotonation of DA cationic intermediates is hindered by the amino groups occupied by two methyl groups. It leads to N-heterocycle (NHC) formation in the MG + MA (MGM) and MG + AM (MGA) reaction systems but to N-containing chain oligomer formation in the MG + DA (MGD) reaction system. Distinct product formation is attributed to electrostatic attraction and steric hindrance, which are regulated by the methyl groups of RNSs. The light absorption and adverse effects of NHCs are also strongly related to the methyl groups of RNSs. Our finding reveals that BrC formation is mainly contributed from MG reaction with RNSs with less methyl groups, which have more abundant and broad sources in the urban environments.


Asunto(s)
Contaminantes Atmosféricos , Dimetilaminas , Piruvaldehído , Carbono , Nitrógeno , Metilaminas , Aerosoles/análisis
6.
J Am Chem Soc ; 145(41): 22649-22658, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37811579

RESUMEN

The heterogeneous reaction of nitryl chloride (ClNO2) on the air-water surface plays a significant role in the chloride lifecycle. The air-water surface is ubiquitous on ice surfaces under supercooled conditions, affecting the uptake and heterogeneous reaction processes of trace gases. Previous studies suggest that ClNO2 is formed on Cl-doped ice surfaces following the N2O5 uptake. Herein, a distinctive heterogeneous reaction mechanism of ClNO2 is suggested on an air-water surface containing Cl under supercooled conditions using combined classic molecular dynamics (MD) and Born-Oppenheimer MD simulations. It is found that N2O5 dissociates into a NO2+ and NO3- ionic pair on the top air-water surface. In the top layer of the surface containing barely any Cl-, NO2+ proceeds through hydrolysis and produces H3O+ and HNO3. Thus, surface acidification appears because of H3O+ yields. With NO2+ diffusion to the deep layer of the surface, NO2+ reacts with Cl- and forms ClNO2. Note that ClNO2 formation competes with NO2+ hydrolysis, and the rate of ClNO2 formation is 27.7[Cl-] larger than that of NO2+ hydrolysis. Afterward, the reaction of ClNO2 with Cl- becomes barrierless with the catalysis by H3O+, which is not feasible on a neutral surface. Cl2 is thus generated and escapes into the atmosphere (low solubility of Cl2), contributing to the Cl radical. The proposed mechanism bolsters the current understanding of ClNO2's fate and its role in Cl chemistry in extremely cold environments like the Arctic and other high-latitude regions in wintertime.

7.
Sci Total Environ ; 888: 163611, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37172835

RESUMEN

New particle formation (NPF) represents a significant source of aerosol particles in the atmosphere; however, the NPF mechanisms remain uncertain, hindering the understanding and assessment of its environmental effects. Hence, we investigated the nucleation mechanisms in multicomponent systems including two inorganic sulfonic acids (ISAs), two organic sulfonic acids (OSAs), and dimethylamine (DMA) by combining quantum chemical (QC) calculations and molecular dynamics (MD) simulations, and evaluated the comprehensive effect of ISAs and OSAs on DMA-driven NPF. The QC results showed that the (Acid)2(DMA)0-1 clusters were strongly stable, and the (ISA)2(DMA)1 clusters exhibited higher stability than the (OSA)2(DMA)1 clusters because ISAs (sulfuric and sulfamic acids) provided more H-bonds and stronger proton transfer than OSAs (methanesulfonic and ethanesulfonic acids). ISAs readily engaged in dimer formation, whereas the stability of trimer clusters was mainly regulated by the synergistic effects of ISAs and OSAs. OSAs participated in cluster growth earlier than ISAs. Our results revealed that ISAs promote cluster formation, whereas OSAs facilitate the growth of clusters. The synergistic effect of ISAs and OSAs should be further investigated in areas with high [OSAs]: [ISAs].

8.
Environ Int ; 174: 107890, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37001212

RESUMEN

Hydroxylated metabolites in the living body are considered as a potential biomarker of exposure to emerging contaminations (ECs) and breast cancer, but their formation mechanism has not received enough attention. Besides, the adverse impacts of metabolites during the metabolic transformation of ECs largely remain unknown. In this study, we employed a density functional calculation combing with in-vitro incubation of human liver microsomes to explore the bio-transformation of preservative methylparaben (MPB) in human bodies. Our results showed that hydroxylated metabolites of MPB (OH-MPB) were observed experimentally, while a formation mechanism was revealed at the molecular level. That is, hydroxylated metabolite was exclusively formed via the hydrogen abstraction from the phenolic hydroxyl group of MPB followed by the OH-rebound pathway, rather than the direct hydroxylation on the benzene ring. The increasing of hydroxyl groups on ECs could improve the metabolisms. This was confirmed in the metabolism of ECs without hydroxyl group and with multiple-hydroxyl groups, respectively. Furthermore, toxicity assessments show that compared to parent MPB, the hydroxylated metabolites have increased negative impacts on the gastrointestinal system and liver. A semiquinone product exhibits potential damage in the cardiovascular system and epoxides are toxic to the blood and gastrointestinal system. The findings deepen our insight into the biotransformation of parabens in human health, especially by providing health warnings about the potential impacts caused by semiquinone and epoxides.


Asunto(s)
Parabenos , Conservadores Farmacéuticos , Humanos , Parabenos/toxicidad , Conservadores Farmacéuticos/toxicidad , Biotransformación , Catálisis
9.
Toxics ; 11(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36851060

RESUMEN

The environmental transformation and health effects of endocrine disruptors (EDCs) need urgent attention, particularly the formation of transformation products with higher toxicity than parent EDCs. In this paper, an important transformation product dimer (short for ethyl 4-hydroxy-3-(2-((4-hydroxybenzoyl) oxy) ethyl) benzoate) with estrogenic activity was investigated and detected in the photolysis of preservative ethyl-paraben (EPB) dissolved in actual water. The environmental factors, such as the higher initial concentration of EPB, the stronger optical power and the lower pH could stimulate the formation of the dimer. Simultaneously, the interaction of multiple environmental factors was significant, especially the initial concentration and pH using the response surface methodology. Furthermore, the relationship between the environmental factors and the formation of the product dimer was further explained and the empirical model equation was built for predicting the amount of dimer in actual water. Quantum chemical and toxicological calculations showed the estrogenic effect mechanism of the product dimer and it was revealed further that the hydrogen bonds of the dimer and ERα proteins (ARG-394, Glu-353, His-524, GYY-521) were formed, with a lowest binding energy of -8.38 Kcal/mol during molecular docking. In addition, the health effect risk of the product dimer was higher than the parent compound in the blood, cardiovascular system, gastrointestinal system, kidney and liver. In short, the present study was of great significance for the transformation product in pollution control and health effects in the photolysis of EDCs.

10.
Chemosphere ; 316: 137759, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36621686

RESUMEN

The reactive oxygen species (ROS) involved photocatalytic ozonation of gaseous n-hexane to heterocyclic compounds has been recently reported. However, whether such heterocyclization reaction happens on other alkanes and what is the contributing mechanism of ROS to the heterocyclic compound formation are still unclear. In present study, photocatalytic ozonation of three n-hexane's isomers (i.e. 2-methypentane, 3-methylpentane and 2,3-dimethylbutane) on Cu2O-CuO/TiO2-foam ceramic was investigated. Within reaction period, 2-methylpentane and 3-methylpentane not only showed higher average degradation efficiency than 2,3-dimethylbutane, but also separately converted to interfacial heterocyclic compounds of 5,5-dimethyldihydro-2(3H)-furanone and 4,5-dimethyl-4,5-dihydro-2(3H)-furanone. Enough reaction time, optimum experimental atmosphere and shorter light wavelength benefited the formation of heterocyclization products. None of O3, 1O2, electron and hole directly contributed to the heterocyclic compound formation. While •O2- dominated the production of the heterocyclic compound under the dry reaction atmosphere and •OH showed more important role than •O2- in the heterocyclic compound formation under the moist reaction atmosphere. Theoretical calculation confirmed that •OH or •O2- induced heterocyclization reaction of alkane was exothermic, while the former reaction released 0.47 eV higher energy than the later reaction. The findings provide a comprehensive understanding of contributing roles of ROS in heterocyclization reaction of alkanes, and are helpful for effective elimination of industrial alkanes by advanced oxidation methods.


Asunto(s)
Hexanos , Ozono , Especies Reactivas de Oxígeno , Alcanos , Catálisis
11.
J Environ Sci (China) ; 126: 103-112, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503740

RESUMEN

Organosulfate (OSA) nanoparticles, as secondary organic aerosol (SOA) compositions, are ubiquitous in urban and rural environments. Hence, we systemically investigated the mechanisms and kinetics of aqueous-phase reactions of 1-butanol/1-decanol (BOL/DOL) and their roles in the formation of OSA nanoparticles by using quantum chemical and kinetic calculations. The mechanism results show that the aqueous-phase reactions of BOL/DOL start from initial protonation at alcoholic OH-groups to form carbenium ions (CBs), which engage in the subsequent esterification or oligomerization reactions to form OSAs/organosulfites (OSIs) or dimers. The kinetic results reveal that dehydration to form CBs for BOL and DOL reaction systems is the rate-limiting step. Subsequently, about 18% of CBs occur via oligomerization to dimers, which are difficult to further oligomerize because all reactive sites are occupied. The rate constant of BOL reaction system is one order of magnitude larger than that of DOL reaction system, implying that relative short-chain alcohols are more prone to contribute OSAs/OSIs than long-chain alcohols. Our results reveal that typical long-chain alcohols contribute SOA formation via esterification rather than oligomerization because OSA/OSI produced by esterification engages in nanoparticle growth through enhancing hygroscopicity.


Asunto(s)
Alcoholes , Alcoholes Grasos , Aerosoles , Butanoles , Polímeros , 1-Butanol
12.
Chemosphere ; 305: 135440, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35753423

RESUMEN

The ubiquity of antidepressants in the environment has posed a potential threat to eco-systematic safety. In this study, six kinds of antidepressants including fluoxetine (FLU), paroxetine (PAR), sertraline (SER), fluvoxamine (FLX), citalopram (CTP), and venlafaxine (VEN) were selected to explore their degrading kinetics, transformation pathways, and the acute toxicity of the reaction solution during UV oxidation. The results showed that the order of the photodegradation rate was FLU > PAR > SER > CTP > FLX > VEN. The calculation results of density functional theory (DFT) and molecular orbital theory showed that it was positively correlated with the frontier electron density of drugs and negatively correlated with the HOMO-LUMO gap, respectively. Intermediates were identified with UHPLC-Q-TOF/MS/MS to propose the possible degradation pathways of the drugs and the most likely directions of the reactions were determined by the single point energy calculation. The results of toxicity tests indicated that the acute toxicity of the reaction solution of PAR did not change significantly. The photolysates toxicity of FLU, SER, and FLX decreased at the end of the reaction, while that of CTP and VEN was increased by 1.5 and 1.3 times compared with the parent compound, respectively. Toxicity predictions by the quantitative structure activity relationship (QSAR) model showed that except FLU-162, FLX-174, and VEN-230, other degradation products have developmental toxicity. The results revealed the transformation pathways of these drugs under the UV disinfection process in wastewater treatment plants, especially the formation of toxic by-products during the disinfection process.


Asunto(s)
Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua , Antidepresivos/toxicidad , Teoría Funcional de la Densidad , Fluoxetina , Cinética , Estrés Oxidativo , Fotólisis , Rayos Ultravioleta , Clorhidrato de Venlafaxina , Contaminantes Químicos del Agua/análisis
13.
J Environ Sci (China) ; 114: 211-220, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35459487

RESUMEN

Methyl-hydroxy-cyclohexadienyl radicals (OTAs) are the key products of the photooxidation of toluene, with implications for the fate of toluene. Hence, we investigated the photooxidation mechanisms and kinetics of three main OTAs (o-OTA, m-OTA, and p-OTA) with NO2 using quantum chemical calculations as well as the fate of OTAs under the different concentration ratios of NO2 and O2. The mechanism results show that the pathway of H-abstraction by NO2 to anti-HONO (anti-H-abstraction) is more favorable than the syn-H-abstraction pathway, because the strong interaction between OTAs and NO2 is formed in the transition states of the anti-H-abstraction pathways. The branching ratios of the anti-H-abstraction pathways are more than 99% in the temperature range of 216-298 K. The total rate constant of the OTA-NO2 reaction is 9.9 × 10-12 cm3/(molecule∙sec) at 298 K, which is contributed about 90% by o-OTA + NO2, and the main products are o-cresol and anti-HONO. The half-lives of the OTA-NO2 reaction in some polluted areas of China are 35 times longer than those of the OTA-O2 reaction. In the atmosphere, the NO2- and O2- initiated reactions of OTAs have the same ability to form cresols as [NO2] is up to 142.1 ppmV, which is impossible to achieve. It implies that under the experimental condition, the [NO2]/[O2] should be controlled to be less than 7.8 × 10-5 to simulate real atmospheric oxidation of toluene. Our results reveal that for the photooxidation of toluene, the yield of cresol is not affected by the concentration of NO2 under the atmospheric environment.


Asunto(s)
Dióxido de Nitrógeno , Tolueno , Cresoles , Radical Hidroxilo , Cinética
14.
Environ Sci Technol ; 56(3): 1791-1800, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35061374

RESUMEN

Iodinated aromatic disinfection byproducts (I-DBPs) are a group of nonregulated but highly toxic DBPs. The formation of I-DBPs is attributed mainly to HOI because it is the most abundant reactive iodine species in chloraminated water. In this study, we used computational modeling of thermodynamics to examine the mechanism of iodination of aromatic contaminants, e.g., dipeptides and phenols. Computational prediction of the energy barriers of the formation of iodinated tyrosylglycine (I-Tyr-Gly) (66.9 kcal mol-1) and hydroxylated Tyr-Gly (OH-Tyr-Gly) (46.0 kcal mol-1) via iodination with HOI favors the formation of OH-Tyr-Gly over I-Tyr-Gly. Unexpectedly, mass spectrometry experiments detected I-Tyr-Gly but not OH-Tyr-Gly, suggesting that I-Tyr-Gly formation cannot be attributed to HOI alone. To clarify this result, we examined the thermodynamic role of the most reactive iodine species H2OI+ in the formation of aromatic I-DBPs under chloramination. Computational modeling of thermodynamic results shows that the formation of a loosely bonded complex of aromatic compounds with H2OI+ is the key step to initiate the iodination process. When H2OI+ serves as an acid catalyst and an iodinating agent, with HOI or H2O acting as a proton acceptor, the energy barrier of I-DBP formation was significantly lower (10.8-13.1 kcal mol-1). Therefore, even with its low concentration, H2OI+ can be involved in the formation of I-DBPs. These results provide insight into the mechanisms of aromatic I-DBP formation and important information for guiding research toward controlling I-DBPs in drinking water.


Asunto(s)
Desinfectantes , Agua Potable , Yodo , Contaminantes Químicos del Agua , Purificación del Agua , Catálisis , Desinfección , Yoduros , Yodo/análisis , Contaminantes Químicos del Agua/análisis
15.
Sci Total Environ ; 821: 153336, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35077791

RESUMEN

During dust storm, mineral particle is frequently observed to be mixed with anthropogenic pollutants (APs) and forms mixing particle which arises more complex influences on regional climate than unmixed mineral particle. Even though mixing particle formation mechanism received significant attention recently, most studies focused on the heterogeneous reaction of inorganic APs on single composition of mineral. Here, the heterogeneous reaction mechanism of amine (a proxy of organic APs) with sulfuric acid (SA) on kaolinite (Kao, a proxy of mineral dust), and its contribution to mixing particle formation are investigated under variable atmospheric conditions. Two heterogeneous reactions of Kao-SA-amine and Kao-H2O-SA-amine in absence/presence of water were comparably investigated using combined theoretical and experimental methods, respectively. The contribution from such two heterogeneous reactions to mixing particle formation was evaluated, respectively, exploring the effect of methyl groups (1-3 -CH3), relative humidity (RH) (11-100%) and temperature (220-298.15 K). Water was observed to play a significant role in promoting heterogeneous reaction of amines with SA on Kao surface, reducing formation energy of mixing particle containing ammonium salt converted by SA. Moreover, the promotion effect from water is enhanced with the increasing RH and the decreasing temperature. For methylamine and dimethylamine containing 1-2 -CH3, the heterogeneous reaction of Kao-H2O-SA-amine contributes more to mixing particle formation. However, for trimethylamine containing 3 -CH3, the heterogeneous reaction of Kao-SA-amine is the dominant source to mixing particle formation. For mixing particle generated from the above two heterogeneous reactions, ammoniums salts are supposed to be predominant components which is of strong hygroscopicity and further leads to significant influence on climate by altering radiative forcing of mixed particle and participating in the cloud condensation nuclei and ice nuclei.


Asunto(s)
Aminas , Atmósfera , Arcilla , Minerales , Ácidos Sulfúricos
16.
J Environ Sci (China) ; 113: 72-80, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34963551

RESUMEN

As a typical class of emerging organic contaminants (EOCs), the environmental transformation and abatement of preservative parabens have raised certain environmental concerns. However, the remediation of parabens-contaminated water using natural matrixes (such as, naturally abundant minerals) is not reported extensively in literature. In this study, the transformation kinetics and the mechanism of ethylparaben using natural sphalerite (NS) were investigated. The results show that around 63% of ethylparaben could be absorbed onto NS within 38 hr, whereas the maximum adsorption capacity was 0.45 mg/g under room temperature. High temperature could improve the adsorption performance of ethylparaben using NS. In particular, for the temperature of 313 K, the adsorption turned spontaneous. The well-fitted adsorption kinetics indicated that both the surface adsorption and intra-particle diffusion contribute to the overall adsorption process. The monolayer adsorption on the surface of NS was primarily responsible for the elimination of ethylparaben. The adsorption mechanism showed that hydrophobic partitioning into organic matter could largely govern the adsorption process, rather than the ZnS that was the main component of NS. Furthermore, the ethylparaben adsorbed on the surface of NS was stable, as only less than 2% was desorbed and photochemically degraded under irradiation of simulated sunlight for 5 days. This study revealed that NS might serve as a potential natural remediation agent for some hydrophobic EOCs including parabens, and emphasized the significant role of naturally abundant minerals on the remediation of EOCs-contaminated water bodies.


Asunto(s)
Parabenos , Contaminantes Químicos del Agua , Adsorción , Cinética , Sulfuros , Agua , Compuestos de Zinc
17.
J Environ Sci (China) ; 105: 56-63, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34130839

RESUMEN

Mineral particles are ubiquitous in the atmosphere and exhibit an important effect on the photooxidation of volatile organic compounds (VOCs). However, the role of mineral particles in the photochemical oxidation mechanism of VOCs remains unclear. Hence, the photooxidation reactions of acrolein (ARL) with OH radical (OH) in the presence and absence of SiO2 were investigated by theoretical approach. The gas-phase reaction without SiO2 has two distinct pathways (H-abstraction and OH-addition pathways), and carbonyl-H-abstraction is the dominant pathway. In the presence of SiO2, the reaction mechanism is changed, i.e., the dominant pathway from carbonyl-H-abstraction to OH-addition to carbonyl C-atom. The energy barrier of OH-addition to carbonyl C-atom deceases 21.33 kcal/mol when SiO2 is added. Carbonyl H-atom of ARL is occupied by SiO2 via hydrogen bond, and carbonyl C-atom is activated by SiO2. Hence, the main product changes from H-abstraction product to OH-adduct in the presence of SiO2. The OH-adduct exhibits a thermodynamic feasibility to yield HO2 radical and carboxylic acid via the subsequent reactions with O2, with implications for O3 formation and surface acidity of mineral particles.


Asunto(s)
Radical Hidroxilo , Dióxido de Silicio , Atmósfera , Cinética , Minerales
18.
Environ Sci Technol ; 55(8): 4430-4439, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33721996

RESUMEN

Large amounts of small α-dicarbonyls (glyoxal and methylglyoxal) are produced in the atmosphere from photochemical oxidation of biogenic isoprene and anthropogenic aromatics, but the fundamental mechanisms leading to secondary organic aerosol (SOA) and brown carbon (BrC) formation remain elusive. Methylglyoxal is commonly believed to be less reactive than glyoxal because of unreactive methyl substitution, and available laboratory measurements showed negligible aerosol growth from methylglyoxal. Herein, we present experimental results to demonstrate striking oligomerization of small α-dicarbonyls leading to SOA and BrC formation on sub-micrometer aerosols. Significantly more efficient growth and browning of aerosols occur upon exposure to methylglyoxal than glyoxal under atmospherically relevant concentrations and in the absence/presence of gas-phase ammonia and formaldehyde, and nonvolatile oligomers and light-absorbing nitrogen-heterocycles are identified as the dominant particle-phase products. The distinct aerosol growth and light absorption are attributed to carbenium ion-mediated nucleophilic addition, interfacial electric field-induced attraction, and synergetic oligomerization involving organic/inorganic species, leading to surface- or volume-limited reactions that are dependent on the reactivity and gaseous concentrations. Our findings resolve an outstanding discrepancy concerning the multiphase chemistry of small α-dicarbonyls and unravel a new avenue for SOA and BrC formation from atmospherically abundant, ubiquitous carbonyls and ammonia/ammonium sulfate.


Asunto(s)
Carbono , Glioxal , Aerosoles , Sulfato de Amonio , Piruvaldehído
19.
Environ Res ; 195: 110747, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33476664

RESUMEN

Enhancement of reactive oxygen species (ROS) on semiconductor coupled by carbon material promotes photocatalytic performance toward aromatic hydrocarbons, while the contribution to their degradation mechanism and health risk is not well understood. Herein, photocatalytic degradation of styrene on TiO2 and TiO2/reduced graphene oxide (TiO2/rGO) surface is compared under dry air condition to investigate the role of ·O2- in styrene degradation. TiO2/rGO shows 4.8 times higher degradation efficiency than that of TiO2, resulting in 16% reduced production of intermediates with identical composition. The improved formation of ·O2- on TiO2/rGO is confirmed responsible for these variations. Theoretical calculation further reveals the enhancement of ·O2- thermodynamically favoring conversion of styrene to acetophenone, turning the most dominant intermediate from benzoic acid on TiO2 to acetophenone on TiO2/rGO. The accumulated formation of acetophenone on TiO2/rGO poses increased acute threat to human beings. Our findings proclaim that ROS promoted photocatalytic performance of semiconductor after carbon material composition ultimately changes the priority order of degradation pathways to form by-product with higher threat toward human beings. And more attentions are advised focusing on the relevance with degradation efficiency, intermediate and toxicity of aromatic hydrocarbons on carbon material based photocatalyst.


Asunto(s)
Grafito , Catálisis , Humanos , Óxidos , Estireno/toxicidad , Superóxidos , Titanio
20.
J Am Chem Soc ; 143(2): 1171-1178, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33383988

RESUMEN

The effect of sulfuric acid (SA) concentrations on heterogeneous reactions of amines such as methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) at the air-particle interface is investigated using combined classical molecular dynamics, Born-Oppenheimer molecular dynamics, and quantum chemical calculations. The results show that the mixtures of these amine vapors can accumulate at the air-particle interface and then participate in two types of heterogeneous reactions depending on the SA concentrations in the aqueous particles. At high SA concentrations, amines are neutralized by H3O+ and form ammonium salts within only a few picoseconds. At low SA concentrations, amines mainly proceed by hydrolysis reactions and produce ionic pairs of ammonium and OH-. However, the formed ionic pair is extremely unstable, and the reverse reaction takes place. Considering that the salt conversion time scales of amines at high SA concentrations are 2.5-15 times faster than those at low SA concentration, amine accumulation at high acidity particles is more favored.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...