Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(26): 8162-8170, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38904300

RESUMEN

Developing efficient and CO-tolerant platinum (Pt)-based anodic catalysts is challenging for a direct formic acid fuel cell (DFAFC). Herein, we report heterostructured Pt-lead-sulfur (PtPbS)-based nanomaterials with gradual phase regulation as efficient formic acid oxidation reaction (FAOR) catalysts. The optimized Pt-PbS nanobelts (Pt-PbS NBs/C) display the mass and specific activities of 5.90 A mgPt-1 and 21.4 mA cm-2, 2.2/1.2, 1.5/1.1, and 36.9/79.3 times greater than those of PtPb-PbS NBs/C, Pt-PbSO4 NBs/C, and commercial Pt/C, respectively. Simultaneously, it exhibits a higher membrane electrode assembly (MEA) power density (183.5 mW cm-2) than commercial Pt/C (40.3 mW cm-2). This MEA stably operates at 0.4 V for 25 h, demonstrating a competitive potential of device application. The distinctive heterostructure endows the Pt-PbS NBs/C with optimized dehydrogenation steps and resisting the CO poisoning, thus presenting the remarkable FAOR performance. This work paves an effective avenue for creating high-performance anodic catalysts for fuel cells and beyond.

2.
J Colloid Interface Sci ; 673: 202-215, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38875787

RESUMEN

To address the ongoing challenges posed by the SARS-CoV-2 and potentially stronger viruses in the future, the development of effective methods to fabricate patterned graphene (PG) and other precisely functional products has become a new research frontier. Herein, we modeled the "checkerboard" graphene (CG) and stripped graphene (SG) as representatives of PG, and studied their interaction mechanism with the target protein (Mpro) by molecular dynamics simulation. The calculation results on the binding strength and the root mean square deviation values of the active pocket revealed that PG is an effective platform for adsorption, immobilization, and destruction of Mpro. Specifically, CG is found to promote disruption of the active pocket for Mpro, but the presence of "checkerboard" oxidized regions inhibits the adsorption of Mpro. Meanwhile, the SG can effectively confine Mpro within the non-oxidized strips and enhances their binding strength, but doesn't play well on disrupting the active pocket. Our work not only elucidates the biological effects of PGs, but also provides guidance for their targeted and precise utilization in combating the SARS-CoV-2.

3.
Nat Nanotechnol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918614

RESUMEN

Constructing regioselective architectures in heterostructures is important for many applications; however, the targeted design of regioselective architectures is challenging due to the sophisticated processes, impurity pollution and an unclear growth mechanism. Here we successfully realized a one-pot kinetically controlled synthetic framework for constructing regioselective architectures in metallic heterostructures. The key objective was to simultaneously consider the reduction rates of metal precursors and the lattice matching relationship at heterogeneous interfaces. More importantly, this synthetic method also provided phase- and morphology-independent behaviours as foundations for choosing substrate materials, including phase regulation from Pd20Sb7 hexagonal nanoplates (HPs) to Pd8Sb3 HPs, and morphology regulation from Pd20Sb7 HPs to Pd20Sb7 rhombohedra and Pd20Sb7 nanoparticles. Consequently, the activity of regioselective epitaxially grown Pt on Pd20Sb7 HPs was greatly enhanced towards the ethanol oxidation reaction; its activity was 57 times greater than that of commercial Pt/C, and the catalyst showed increased stability (decreasing by 16.3% after 2,000 cycles) and selectivity (72.4%) compared with those of commercial Pt/C (56.0%, 18.2%). This work paves the way for the design of unconventional well-defined heterostructures for use in various applications.

4.
Integr Med Res ; 13(2): 101043, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38779540

RESUMEN

Background: This study aimed to investigate whether placebo control is differently disclosed in drug and non-drug randomised clinical trial (RCT) participant information leaflets (PILs) and how this might affect participant blinding and direction of study outcomes. Methods: PILs were obtained from trials registered in the International Standard Randomised Controlled Trial Number database via email. Placebo descriptions in PILs were categorised as Full Disclosure (FD), Partial Disclosure (PD), or Missing Information (MI). Associations between intervention type (drug or non-drug)/placebo disclosure (FD or PD/MI) and participant blinding success/trial outcome direction (positive or non-positive) were examined using a two-sided Fisher's exact test. Results: Of 116 collected PILs, 56 % were for drug trials and 44 % were for non-drug trials. Among them, 88 PILs had the corresponding publications available and 68 reports specified primary outcomes. Drug trials were more likely to fully disclose placebo information than non-drug trials (92.3 % vs. 74.5 %, p < 0.05). However, the success rate of blinding was only reported in 3 out of 88 trial publications (3.4 %), precluding further analysis. Furthermore, there was no significant association between the direction of trial results and the type of intervention or placebo disclosure. Conclusion: Our study findings suggest that drug and non-drug RCTs might differ in the way they reveal placebo control information. Further research is warranted to understand what leads to more common PD of placebo information in non-drug trials than drug trials and to determine the optimal placebo control disclosure in specific trial context.

5.
Natl Sci Rev ; 11(6): nwae153, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38800666

RESUMEN

Vesicle, a microscopic unit that encloses a volume with an ultrathin wall, is ubiquitous in biomaterials. However, it remains a huge challenge to create its inorganic metal-based artificial counterparts. Here, inspired by the formation of biological vesicles, we proposed a novel biomimetic strategy of curling the ultrathin nanosheets into nanovesicles, which was driven by the interfacial strain. Trapped by the interfacial strain between the initially formed substrate Rh layer and subsequently formed RhRu overlayer, the nanosheet begins to deform in order to release a certain amount of strain. Density functional theory (DFT) calculations reveal that the Ru atoms make the curling of nanosheets more favorable in thermodynamics applications. Owing to the unique vesicular structure, the RhRu nanovesicles/C displays excellent hydrogen oxidation reaction (HOR) activity and stability, which has been proven by both experiments and DFT calculations. Specifically, the HOR mass activity of RhRu nanovesicles/C are 7.52 A mg(Rh+Ru)-1 at an overpotential of 50 mV at the rotating disk electrode (RDE) level; this is 24.19 times that of commercial Pt/C (0.31 mA mgPt-1). Moreover, the hydroxide exchange membrane fuel cell (HEMFC) with RhRu nanovesicles/C displays a peak power density of 1.62 W cm-2 in the H2-O2 condition, much better than that of commercial Pt/C (1.18 W cm-2). This work creates a new biomimetic strategy to synthesize inorganic nanomaterials, paving a pathway for designing catalytic reactors.

6.
Phys Chem Chem Phys ; 26(12): 9350-9355, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38444345

RESUMEN

Dual-atom catalysts (DACs) have emerged as a compelling frontier in the realm of the electrochemical carbon dioxide reduction reaction (CO2RR). However, elucidating the intrinsic properties of dual-atom pairs and their direct correlation with catalytic activity poses significant challenges. Herein, we investigate CO adsorption on 248 kinds of C2N-supported DACs and analyze the underlying structure-activity relationships of dual transition metal (TM) atoms based on density functional theory (DFT) calculations and machine learning (ML) models. Compared to the direct input of atomic features in the decision tree model of ML, we confirm that extra feature engineering with the introduction of the arithmetic combination of atomic features can better reflect the correlation of dual TM atoms on C2N-based DACs. Further feature importance analysis reveals a strong relationship between the last one occupied orbital radius (rv), group number (G) for dual TM atoms and the CO binding strength, as well as a potential connection with the d band centre (εd). Our work provides deeper insights into the design of DACs and highlights the significance of twofold feature engineering for the synergistic effects between dual TM atoms.

7.
Small ; 20(10): e2305662, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37897152

RESUMEN

The search for high-performance and low-cost electrocatalysts in acid conditions still remains a challenging target. Herein, iridium (Ir) doped strontium manganate (named as Irx -SMO) is proposed as an efficient and durable low-iridium electrocatalyst for water oxidation in acidic media. The Ir0.1 -SMO with 75% less iridium in comparison to that of iridium dioxide (IrO2 ) exhibits excellent performance for oxygen evolution reaction (OER), which is even better than most of the iridium-based oxide electrocatalysts. The theoretical outcomes confirm the activation of the inert manganese sites in strontium manganate by the incorporation of iridium dopants. This work reveals the boosted effect of the iridium dopants on the OER activity of strontium manganate, providing a strategy to tune the activity of manganese-based perovskites in electrocatalysis.

8.
Adv Mater ; 36(7): e2308839, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37906727

RESUMEN

Highly selective semihydrogenation of alkynes to alkenes is a highly important reaction for catalytic industry. Developing non-noble metal based catalysts with platinum group metal-like activity and selectivity is extremely crucial yet challenging. Metastable phase catalysts provide a potential candidate to realize high activity, yet the control of selectivity remains an open question. Here, this work first reports a metastable phase core-shell: face-centered cubic (fcc) phase Ag (10 at%) core-metastable hexagonal closest packed (hcp) phase Ni (90 at%) shell catalyst, which represents high conversion rate, high selectivity, and remarkable universality for the semihydrogenation of phenylacetylene and its derivatives. More impressively, a turnover frequency (TOF) value of 8241.8 h-1 is achieved, much higher than those of stable phase catalysts and reported platinum group metal based catalysts. Mechanistic investigation reveals that the surface of hcp Ni becomes more oxidized due to electron transfer from hcp Ni shell to fcc Ag core, which decreases the adsorption capacity of styrene on the metastable phase Ni surface, thus preventing full hydrogenation. This work has gained crucial research significance for the design of high performance metastable phase catalysts.

9.
J Am Chem Soc ; 145(51): 28010-28021, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38095915

RESUMEN

Phase regulation of noble metal-based nanomaterials provides a promising strategy for boosting the catalytic performance. However, realizing the continuous phase modulation in two-dimensional structures and unveiling the relevant structure-performance relationship remain significant challenges. In this work, we present the first example of continuous phase modulation in a library of Pd-Te hexagonal nanoplates (HNPs) from cubic-phase Pd4Te, rhombohedral-phase Pd20Te7, rhombohedral-phase Pd8Te3, and hexagonal-phase PdTe to hexagonal-phase PdTe2. Notably, the continuous phase regulation of the well-defined Pd-Te HNPs enables the successful modulation of the distance between adjacent Pd active sites, triggering an exciting way for tuning the relevant catalytic reactions intrinsically. The proof-of-concept oxygen reduction reaction (ORR) experiment shows a Pd-Pd distance-dependent ORR performance, where the hexagonal-phase PdTe HNPs present the best electrochemical performance in ORR (mass activity and specific activity of 1.02 A mg-1Pd and 1.83 mA cm-2Pd at 0.9 V vs RHE). Theoretical investigation reveals that the increased Pd-Pd distance relates to the weak *OH adsorption over Pd-Te HNPs, thus contributing to the remarkable ORR activity of PdTe HNPs. This work advances the phase-controlled synthesis of noble metal-based nanostructures, which gives huge impetus to the design of high-efficiency nanomaterials for diverse applications.

10.
Adv Mater ; 35(52): e2307736, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37909806

RESUMEN

There has been increasing interests in π-d conjugated coordination polymers (CCPs) for energy storage because of their rapid charge transfer through long-range planar π-d conjugation between ligands and metal centers. Nevertheless, currently reported CCPs for energy storage are mostly based on 1D or 2D structures. There are few 3D CCPs reported to date because of the great challenge in constructing nonplanar coordination geometries, let alone their applications in multivalent ions storage. Herein, a triphenylene-catecholate-based 3D CCP (Mn-HHTP) is successfully synthesized assembled from the multidentate chelating groups of hexahydroxytriphenylene (HHTP) ligands and their isotropic coordination with Mn2+ ions. The 3D conjugated structure of Mn-HHTP enables an exceptional cycle life of >4000 cycles at 0.5 A g-1 for multivalent Mg2+ ion storage, which is far superior to most organic and inorganic electrode materials. Experimental characterizations combined with theoretical calculations indicate that the semiquinone radicals at the HHTP ligands are the electroactive centers for Mg2+ ions storage. The excellent performance of Mn-HHTP opens a new avenue towards the design of 3D CCPs for long-life rechargeable magnesium-ion batteries.

11.
Phys Chem Chem Phys ; 25(33): 21860-21867, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37529976

RESUMEN

Hydrazine borane (N2H4BH3) has attracted considerable interest as a promising solid-state hydrogen storage material owing to its high hydrogen content and easy preparation. In this work, pressure-induced phase transitions of N2H4BH3 were investigated using a combination of vibrational spectroscopy, X-ray diffraction, and density functional theory (DFT) up to 30 GPa. Our results showed that N2H4BH3 exhibits remarkable structural stability in a very broad pressure region up to 15 GPa, and then two phase transitions were identified: the first one is from the ambient-pressure Pbcn phase to a Pbca phase near 15 GPa; the second is from the Pbca phase to a Pccn phase near 25 GPa. As revealed by DFT calculations, the unusual stability of N2H4BH3 and the late phase transformations were attributed to the pressure-mediated evolutions of dihydrogen bonding frameworks, the compressibility and the enthalpies of the high-pressure polymorphs. Our findings provide new insight into the structures and bonding properties of N2H4BH3 that are important for hydrogen storage applications.

12.
J Phys Chem A ; 127(28): 5921-5929, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37418164

RESUMEN

Since the structures of crystals/molecules are often non-Euclidean data in real space, graph neural networks (GNNs) are regarded as the most prospective approach for their capacity to represent materials by graph-based inputs and have emerged as an efficient and powerful tool in accelerating the discovery of new materials. Here, we propose a self-learning-input GNN framework, named self-learning-input GNN (SLI-GNN), to uniformly predict the properties for both crystals and molecules, in which we design a dynamic embedding layer to self-update the input features along with the iteration of the neural network and introduce the Infomax mechanism to maximize the average mutual information between the local features and the global features. Our SLI-GNN can reach ideal prediction accuracy with fewer inputs and more message passing neural network (MPNN) layers. The model evaluations on the Materials Project dataset and QM9 dataset verify that the overall performance of our SLI-GNN is comparable to that of other previously reported GNNs. Thus, our SLI-GNN framework presents excellent performance in material property prediction, which is thereby promising for accelerating the discovery of new materials.

13.
JACS Au ; 3(4): 1131-1140, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37124307

RESUMEN

The discovery of active and stable catalysts for the oxygen evolution reaction (OER) is vital to improve water electrolysis. To date, rutile iridium dioxide IrO2 is the only known OER catalyst in the acidic solution, while its poor activity restricts its practical viability. Herein, we propose a universal graph neural network, namely, CrystalGNN, and introduce a dynamic embedding layer to self-update atomic inputs during the training process. Based on this framework, we train a model to accurately predict the formation energies of 10,500 IrO2 configurations and discover 8 unreported metastable phases, among which C2/m-IrO2 and P62-IrO2 are identified as excellent electrocatalysts to reach the theoretical OER overpotential limit at their most stable surfaces. Our self-learning-input CrystalGNN framework exhibits reliable accuracy, generalization, and transferring ability and successfully accelerates the bottom-up catalyst design of novel metastable IrO2 to boost the OER activity.

14.
Small ; 19(38): e2208202, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37222629

RESUMEN

Pursuing highly active and long-term stable ruthenium (Ru) based oxygen evolution reaction (OER) catalyst for water electrolysis under acidic conditions is of great significance yet a tremendous challenge to date. To solve the problem of serious Ru corrosion in an acid medium, the trace lattice sulfur (S) inserted RuO2 catalyst is prepared. The optimized catalyst (Ru/S NSs-400) has shown a record stability of 600 h for the solely containing Ru (iridium-free) nanomaterials. In the practical proton exchange membrane device, the Ru/S NSs-400 can even sustain more than 300 h without obvious decay at the high current density of 250 mA cm-2 . The detailed investigations reveal that S doping not only changes the electronic structure of Ru via forming RuS coordination for high adsorption of reaction intermediates but also stabilizes Ru from over-oxidation. This strategy is also effective for improving the stability of commercial Ru/C and homemade Ru-based nanoparticles. This work offers a highly effective strategy to design high-performance OER catalysts for water splitting and beyond.

15.
Sci Bull (Beijing) ; 68(12): 1271-1282, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37258377

RESUMEN

Narrow-bandgap mixed Sn-Pb perovskite solar cells (PSCs) have showcased great potential to approach the Shockley-Queisser limit. Nevertheless, the practical application and long-term deployment of mixed Sn-Pb PSCs are still largely impeded by the rapid oxidation of Sn2+ ions and under-optimized carrier transport layer (CTL)/perovskite interfaces that would inevitably incur serious interfacial charge recombination and device performance degradation. Herein, we successfully removed the hole transport layer (HTL) by incorporating a small amount of organic phosphonic acid molecules into perovskites, which could preferably interact with Sn2+ ions (relative to Pb2+ analogues) at the grain boundaries (GBs) throughout the perovskite film thickness via coordination bonding, thus effectively retarding the oxidation of Sn2+, passivating the defects and suppressing the non-radiative recombination. Targeted modification effectively reinforced built-in potential by ∼100 mV, and favorably induced energy level cascade, thus accelerating spatial charge separation and facilitating the hole extraction from perovskite layer to underlying conductive electrodes even in the absence of HTL. Consequently, enhanced power conversion efficiencies up to 20.21% have been achieved, which is the record efficiency for the HTL-free mixed Sn-Pb PSCs, accompanied by a decent photovoltage of 0.87 V and improved long-term stability over 2400 h.

16.
Nat Commun ; 14(1): 1248, 2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871002

RESUMEN

Metastable metal oxides with ribbon morphologies have promising applications for energy conversion catalysis, however they are largely restricted by their limited synthesis methods. In this study, a monoclinic phase iridium oxide nanoribbon with a space group of C2/m is successfully obtained, which is distinct from rutile iridium oxide with a stable tetragonal phase (P42/mnm). A molten-alkali mechanochemical method provides a unique strategy for achieving this layered nanoribbon structure via a conversion from a monoclinic phase K0.25IrO2 (I2/m (12)) precursor. The formation mechanism of IrO2 nanoribbon is clearly revealed, with its further conversion to IrO2 nanosheet with a trigonal phase. When applied as an electrocatalyst for the oxygen evolution reaction in acidic condition, the intrinsic catalytic activity of IrO2 nanoribbon is higher than that of tetragonal phase IrO2 due to the low d band centre of Ir in this special monoclinic phase structure, as confirmed by density functional theory calculations.

17.
Nat Commun ; 14(1): 1761, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997541

RESUMEN

Metastable phase two-dimensional catalysts provide great flexibility for modifying their chemical, physical, and electronic properties. However, the synthesis of ultrathin metastable phase two-dimensional metallic nanomaterials is highly challenging, mainly due to the anisotropic nature of metallic materials and their thermodynamically unstable ground-state. Here, we report free-standing RhMo nanosheets with atomic thickness and a unique core/shell (metastable phase/stable phase) structure. The polymorphic interface between the core region and shell region stabilizes and activates metastable phase catalysts; the RhMo Nanosheets/C shows excellent hydrogen oxidation activity and stability. Specifically, the mass activities of RhMo Nanosheets/C is 6.96 A mgRh-1; this is 21.09 times higher than that of commercial Pt/C (0.33 A mgPt-1). Density functional theory calculations suggest that the interface aids in the dissociation of H2 and the H species can then spillover to weak H binding sites for desorption, providing excellent hydrogen oxidation activity for RhMo nanosheets. This work advances the highly controlled synthesis of two-dimensional metastable phase noble metals and provides great directions for the design of high-performance catalysts for fuel cells and beyond.

18.
Adv Sci (Weinh) ; 10(11): e2206063, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36775850

RESUMEN

Catalytic reactions are surface-sensitive processes. Fabrication of homogeneous metastable metals can be used to promote phase-dependent catalytic performance; however, this has been a challenging task. Herein, homogeneous metastable hexagonal close-packed (hcp) Ir is epitaxially grown onto metastable phase hcp Ni, as demonstrated using spherical aberration electron microscopy. The as-fabricated metastable hcp Ir exhibits high intrinsic activity for the alkaline hydrogen evolution reaction (HER). In particular, metastable hcp Ir delivers a low overpotential of 17 mV at 10 mA cm-2 and presents a high specific activity of 8.55 mA cm-2 and a high turnover frequency of 38.26 s-1 at -0.07 V versus the reversible hydrogen electrode. Owing to its epitaxially grown structure, metastable hcp Ir is highly stable. Theoretical calculations reveal that metastable hcp Ir promotes H2 O adsorption and fast H2 O dissociation, which contributes to its remarkable HER activity. Findings can elucidate the crystal phase-controlled synthesis of advanced noble metal nanomaterials for the fundamental catalytic applications.

19.
Natl Sci Rev ; 10(1): nwac171, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36684521

RESUMEN

Two-dimensional covalent organic frameworks are promising for photocatalysis by virtue of their structural and functional diversity, but generally suffer from low activities relative to their inorganic competitors. To fulfill their full potential requires a rational tailoring of their structures at different scales as well as their surface properties. Herein, we demonstrate benzobisthiazole-based covalent organic frameworks as a superior photocatalyst for hydrogen production. The product features high crystallinity with ordered 2.5-nm-wide cylindrical mesopores and great water wettability. These structural advantages afford our polymeric photocatalyst with fast charge carrier dynamics as evidenced by a range of spectroscopic characterizations and excellent catalytic performances when suspended in solution or supported on melamine foams. Under visible-light irradiation, it enables efficient and stable hydrogen evolution with a production rate of 487 µmol h-1 (or a mass-specific rate of 48.7 mmol g-1 h-1)-far superior to the previous state of the art. We also demonstrate that hydrogen production can be stoichiometrically coupled with the oxidation conversion of biomass as exemplified by the conversion of furfuryl alcohol to 2-furaldehyde.

20.
Small ; 19(11): e2205336, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36581559

RESUMEN

Functional passivators are conventionally utilized in modifying the crystallization properties of perovskites to minimize the non-radiative recombination losses in perovskite light-emitting diodes (PeLEDs). However, the weak anchor ability of some commonly adopted molecules has limited passivation ability to perovskites and even may desorb from the passivated defects in a short period of time, which bring about plenty of challenges for further development of high-performance PeLEDs. Here, a multidentate molecule, formamidine sulfinic acid (FSA), is introduced as a novel passivator to perovskites. FSA has multifunctional groups (S≐O, C≐N and NH2 ) where the S≐O and C≐N groups enable coordination with the lead ions and the NH2 interacts with the bromide ions, thus providing the most effective chemical passivation for defects and in turn the formation of highly stable perovskite emitters. Moreover, the interaction between the FSA and octahedral [PbBr6 ]4- can inhibit the formation of unfavorable low-n domains to further minimize the inefficient energy transfer inside the perovskite emitters. Therefore, the FSA passivated green-emitting PeLED exhibits a high external quantum efficiency (EQE) of 26.5% with fourfold enhancement in operating lifetime as compared to the control device, consolidating that the multidentate molecule is a promising strategy to effectively and sustainably passivate the perovskites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...