Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Food Microbiol ; 416: 110661, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38457888

RESUMEN

Aspergillus flavus and its toxic metabolites-aflatoxins infect and contaminate maize kernels, posing a threat to grain safety and human health. Due to the complexity of microbial growth and metabolic processes, dynamic mechanisms among fungal growth, nutrient depletion of maize kernels and aflatoxin production is still unclear. In this study, visible/near infrared (Vis/NIR) hyperspectral imaging (HSI) combined with the scanning electron microscope (SEM) was used to elucidate the critical organismal interaction at kernel (macro-) and microscopic levels. As kernel damage is the main entrance for fungal invasion, maize kernels with gradually aggravated damages from intact to pierced to halved kernels with A. flavus were cultured for 0-120 h. The spectral fingerprints of the A. flavus-maize kernel complex over time were analyzed with principal components analysis (PCA) of hyperspectral images, where the pseudo-color score maps and the loading plots of the first three PCs were used to investigate the dynamic process of fungal infection and to capture the subtle changes in the complex with different hardness of the maize matrix. The dynamic growth process of A. flavus and the interactions of fungus-maize complexes were explained on a microscopic level using SEM. Specifically, fungus morphology, e.g., hyphae, conidia, and conidiophore (stipe) was accurately captured on the microscopic level, and the interaction process between A. flavus and nutrient loss from the maize kernel tissues (i.e., embryo, and endosperm) was described. Furthermore, the growth stage discrimination models based on PLSDA with the results of CCRC = 100 %, CCRV = 97 %, CCRIV = 93 %, and the prediction models of AFB1 based on PLSR with satisfactory performance (R2C = 0.96, R2V = 0.95, R2IV = 0.93 and RPD = 3.58) were both achieved. In conclusion, the results from both macro-level (Vis/NIR-HSI) and micro-level (SEM) assessments revealed the dynamic organismal interactions in A. flavus-maize kernel complex, and the detailed data could be used for modeling, and quantitative prediction of aflatoxin, which would establish a theoretical foundation for the early detection of fungal or toxin contaminated grains to ensure food security.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Humanos , Aspergillus flavus/metabolismo , Zea mays/microbiología , Imágenes Hiperespectrales , Tecnología
2.
J Ethnopharmacol ; 324: 117712, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38184025

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Qingda granule (QDG) is effective for treating hypertension and neuronal damage after cerebral ischemia/reperfusion. However, the anti-neuroinflammatory effect of QDG on injury due to cerebral ischemia/reperfusion is unclear. AIM OF THE STUDY: The objective was to evaluate the effectiveness and action of QDG in treating neuroinflammation resulting from cerebral ischemia/reperfusion-induced injury. MATERIALS AND METHODS: Network pharmacology was used to predict targets and pathways of QDG. An in vivo rat model of middle cerebral artery occlusion/reperfusion (MCAO/R) as well as an in vitro model of LPS-stimulated BV-2 cells were established. Magnetic resonance imaging (MRI) was used to quantify the area of cerebral infarction, with morphological changes in the brain being assessed by histology. Immunohistochemistry (IHC) was used to assess levels of the microglial marker IBA-1 in brain tissue. Bioplex analysis was used to measure TNF-α, IL-1ß, IL-6, and MCP-1 in sera and in BV-2 cell culture supernatants. Simultaneously, mRNA levels of these factors were examined using RT-qPCR analysis. Proteins of the TLR4/NF-κB/NLRP3 axis were examined using IHC in vivo and Western blot in vitro, respectively. While NF-κB translocation was assessed using immunofluorescence. RESULTS: The core targets of QDG included TNF, NF-κB1, MAPK1, MAPK3, JUN, and TLR4. QDG suppressed inflammation via modulation of TLR4/NF-κB signaling. In addition, our in vivo experiments using MCAO/R rats demonstrated the therapeutic effect of QDG in reducing brain tissue infarction, improving neurological function, and ameliorating cerebral histopathological damage. Furthermore, QDG reduced the levels of TNF-α, IL-1ß, IL-6, and MCP-1 in both sera from MCAO/R rats and supernatants from LPS-induced BV-2 cells, along with a reduction in the expression of the microglia biomarker IBA-1, as well as that of TLR4, MyD88, p-IKK, p-IκBα, p-P65, and NLRP3 in MCAO/R rats. In LPS-treated BV-2 cells, QDG downregulated the expression of proinflammatory factors and TLR4/NF-κB/NLRP3 signaling-related proteins. Additionally, QDG reduced translocation of NF-κB to the nucleus in both brains of MCAO/R rats and LPS-induced BV-2 cells. Moreover, the combined treatment of the TLR4 inhibitor TAK242 and QDG significantly reduced the levels of p-P65, NLRP3, and IL-6. CONCLUSIONS: QDG significantly suppressed neuroinflammation by inhibiting the TLR4/NF-κB/NLRP3 axis in microglia. This suggests potential for QDG in treating ischemia stroke.


Asunto(s)
Isquemia Encefálica , Medicamentos Herbarios Chinos , Daño por Reperfusión , Ratas , Animales , FN-kappa B/metabolismo , Microglía , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Enfermedades Neuroinflamatorias , Receptor Toll-Like 4/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos/farmacología , Ratas Sprague-Dawley , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/patología , Daño por Reperfusión/metabolismo
3.
Comput Struct Biotechnol J ; 21: 4056-4069, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664172

RESUMEN

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is one of the most prominent housekeeping proteins and is widely used as an internal control in some semi-quantitative assays. In addition to glycolysis, GAPDH is involved in several cancer-related biological processes and has been reported to be commonly dysregulated in multiple cancer types. Therefore, its role in the physiological process of cancer needs to be urgently elucidated. Pan-cancer analysis indicated that GAPDH is ubiquitously highly expressed in most cancer types, and that patients with a high GAPDH expression of in tumor tissues have a poor prognosis. The concordance of GAPDH expression in tumors with the infiltration of immune cells and immune checkpoints implies a certain association between GAPDH and the tumor microenvironment as well as tumor development. Gene Set Enrichment Analysis revealed that GAPDH may contribute to multiple important cancer-related pathways and biological processes. Multi-omics analysis and in vitro cell experiments revealed that GAPDH overexpression is regulated by DNA copy number amplification and promoter methylation modification. Importantly, a transcription factor, forkhead box M1 (FOXM1), which is capable of regulating GAPDH expression, was also identified and was confirmed to be an oncogene and ubiquitously highly expressed in multiple cancer types. Semi-quantitative chromatin immunoprecipitation, quantitative PCR, and dual-luciferase assays showed that FOXM1 mainly binds to the promoter region of GAPDH in two cancer cell lines. The present findings revealed the implication of GAPDH in tumor development, thus bringing attention to this important molecule and casting doubts on its role as an internal reference gene in cancer studies.

4.
Front Pediatr ; 11: 1005383, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36911015

RESUMEN

Objective: To describe the rate of hypertensive disorder of pregnancy (HDP) among mothers of very preterm infants (VPIs) admitted to Chinese neonatal intensive care units (NICUs), and to investigate the relationship between HDP and the outcomes of VPIs. Study design: Cohort study of all VPIs born at a gestational age of 24+0-31+6 weeks and admitted to 57 tertiary NICUs of the Chinese Neonatal Network (CHNN) in 2019. Infants with severe congenital anomalies or missing maternal HDP information were excluded. Two multivariate logistic regression models were generated to assess the relationship between HDP and neonatal outcomes. Results: Among 9,262 infants enrolled, 1,744 (18.8%) infants were born to mothers with HDP, with an increasing incidence with increasing gestational age. VPIs born to mothers with HDP had higher gestational age but lower birth weight and were more likely to be small for gestational age. Mothers with HDP were more likely to receive antenatal steroids, MgSO4 and cesarean section. Infants in the HDP group showed higher observed rates of mortality or any morbidity than infants in the non-HDP group (50.2% vs. 47.2%, crude odds ratio (OR) 1.13, 95% CI 1.02-1.26). However, the associations between HDP and adverse outcomes were not significant after adjustment. In the HDP group, mothers of 1,324/1,688 (78.4%) infants were diagnosed with preeclampsia/eclampsia. Infants born to mothers with preeclampsia/eclampsia had significantly lower odds of early death and severe retinopathy of prematurity. Conclusions: Nearly one-fifth of VPIs were born to mothers with HDP in Chinese NICUs. No significant association was identified between HDP and adverse neonatal short-term outcomes of VPIs, while long-term follow-up of these infants is needed.

5.
J Fish Dis ; 46(5): 575-589, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36861304

RESUMEN

Chronic subclinical infection with the aetiological agent of bacterial kidney disease (BKD), Renibacterium salmoninarum, presents challenges for the clinical management of disease in farmed salmonids and for prevalence estimation. Harvested salmon sampled at processing plants provide the opportunity to describe subclinical outcomes of BKD using gross necropsy observations and diagnostic test results in farmed Atlantic salmon (Salmo salar L.) populations that are apparently healthy (i.e. alive at harvest) but naturally exposed to R. salmoninarum infection. Sampling of farmed salmon (Population A, n = 124 and Population B, n = 160) was performed immediately post-slaughter as fish were being processed at a plant in New Brunswick, Canada. Populations were selected based on planned harvests from sites with histories of recent exposure events related to clinical BKD as evidenced by the site veterinarian's diagnosis of mortality attributable to BKD: One site (Pop A) had recently increasing mortalities attributed to BKD, and the other site (Pop B) had ongoing low-level mortalities with BKD pathology. As expected with the different exposure histories, Pop A had a higher percentage (57.2%) of R. salmoninarum culture-positive kidney samples compared with similar fish samples in Pop B (17.5%). Diagnosis of R. salmoninarum by gross granulomatous lesions in internal visceral organs, bacterial culture and identification by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) using different swab transport methods, and molecular detection methods (quantitative PCR, qPCR) were compared. Agreement of culture-positive percentages at the sample level was moderate (kappa: 0.61-0.75) among specimens collected using different kidney sampling methods in Pop A and Pop B. The highest proportion of R. salmoninarum-positive cultures occurred when kidney tissues were transported to the laboratory and inoculated directly onto agar using a swab (94% of cultures from Pop A and 82% from Pop B when fish were positive by any culture method). Fish with cumulative lesion scores (severity of granulomatous lesions in 3 different visceral organs) of >4 were all culture positive, and when compared with non-lesioned fish, had substantially higher odds of being culture positive: Pop A: odds ratio (OR) = 73, 95% confidence interval (CI) (7.91, 680.8); Pop B: OR = 66, 95% CI (6.12, 720.7). Our study found that onsite postmortem examinations with severity scores of gross granulomatous lesions were predictive of positive culture results for R. salmoninarum, and they were a useful proxy for assessing prevalence in apparently healthy populations with subclinical infection.


Asunto(s)
Enfermedades de los Peces , Enfermedades Renales , Micrococcaceae , Salmo salar , Animales , Infecciones Asintomáticas , Enfermedades de los Peces/microbiología , Enfermedades Renales/epidemiología , Canadá , Pruebas Diagnósticas de Rutina
6.
Front Pharmacol ; 14: 1040778, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36825153

RESUMEN

Background: Digoxin is one of the most widely and commonly used cardiac drug, which plays an irreplaceable role in treating heart failure and arrhythmia. The 2010 Edition of Pharmacopoeia of the People's Republic of China stipulates that the effective range of digoxin plasma concentration is 0.5-2.0 ng/mL and it is toxic at plasma concentration >2 ng/mL. Its effective plasma drug concentration is close to the toxic concentration, and large individual differences in the effects of the drug have been observed. It is often used in combination with other drugs, but drug interactions have a great impact on the plasma concentration of digoxin and lead to adverse reactions (ADRs), such as poisoning. Most of the reported drug interactions are with Western drugs. However, there are many combinations of traditional Chinese medicine (TCM) and Western drugs, TCM interacting with digoxin comprises monomer components, single medicines, and Chinese patent medicines. Aim of the study: We aimed i) to provide an overview of the TCM formulations affecting the pharmacology of digoxin and their mechanisms of action and ii) to provide a theoretical reference for the safe and rational use of digoxin in combination with TCM in clinical practice and to avoid ADRs. Methods: A literature search of electronic databases, including PubMed, MEDLINE, Cochrane Library, Web of Science, China National Knowledge Infrastructure, and WANFANG Data, was performed to search for articles published between 1 January 1960, and 1 August 2022. Search terms used included "digoxin," "traditional Chinese medicine," "Chinese patent medicine," and "adverse reactions" and their combinations. Results: A total of 49 articles were obtained, including clinical reports, pharmacological experiments and in vitro experiments. The mechanisms of action affecting the pharmacology of digoxin are complex. TCM formulations may affect the pharmacology of digoxin in vivo by influencing gastrointestinal motility or gastric juice pH, regulating P-glycoprotein levels, exerting cumulative pharmacological effects, and enhancing the sensitivity of the heart to digoxin. Although studies have shown that some TCM formulations interact with digoxin, they may be influenced by the complexity of the composition and the pharmacological effects of the TCM, the sensitivity of digoxin concentration determination methods, etc. The results of existing studies are controversial and further in-depth studies are required. Conclusion: Combinations of digoxin and TCM formulations are commonly used. This article serves as a reference to understand the interactions between TCM formulations and digoxin to avoid the occurrence of ADRs and improve the efficacy and safety of digoxin.

7.
Nanomaterials (Basel) ; 13(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36770367

RESUMEN

Space charge accumulation greatly influences the dielectric performance of epoxy composites under high voltage. It has been reported that nano-fillers can suppress the charge accumulation in the bulk of insulation materials. However, it is still unclear how the nano-fillers influence the charge distribution at the interface between the filler and polymeric matrix. In this work, the dielectric properties and the local dynamic charge mobility behavior at the interface of barium titanate/epoxy resin (BTO/EP) composites were investigated from both bulk and local perspectives based on the macroscopic test techniques and in-situ Kelvin probe force microscopy (KPFM) methods. Charge injection and dissipation behavior exhibited significant discrepancies at different interfaces. The interface between BTO and epoxy is easy to accumulates a negative charge, and nanoscale BTO (n-BTO) particles introduces deeper traps than microscale BTO (m-BTO) to inhibit charge migration. Under the same bias condition, the carriers are more likely to accumulate near the n-BTO than the m-BTO particles. The charge dissipation rate at the interface region in m-BTO/EP is about one order of magnitude higher than that of n-BTO/EP. This work offers experimental support for understanding the mechanism of charge transport in dielectric composites.

8.
Food Chem ; 403: 134497, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36358089

RESUMEN

The objective of this study was to investigate the mechanisms of phosphates coupled with KCl (at 0, 0.01 and 0.03 M) affecting gel and emulsifying properties of myofibrillar protein (MP) from mantis shrimp. 31P NMR showed that phosphate groups were introduced to MP after treatment with sodium pyrophosphate (SPP) or sodium tripolyphosphate (STPP). The incorporation of phosphates enhanced electronegativity and solubility of MP, leading to exposure of hydrophobic groups, especially in the presence of 0.03 M KCl. These changes resulted in increased gel strength, water-holding capacity and elasticity of MP, mainly due to the improved cross-linking of proteins via ionic interaction, hydrophobic interaction and disulfide bonds. Furthermore, the combination of phosphate and KCl contributed to formation of more stable emulsions stabilized by MP with higher emulsifying activity and smaller droplet size. These results indicated that phosphates and low-dose sodium substitutes synergistically improved the processing properties of muscle food.


Asunto(s)
Crustáceos , Proteínas Musculares , Animales , Solubilidad , Fosforilación , Proteínas Musculares/química , Geles/química , Concentración Osmolar
9.
Mol Cancer ; 21(1): 229, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36581942

RESUMEN

RATIONALE: Lung cancer is the most prevalent form of cancer and has a high mortality rate, making it a global public health concern. The N6-methyladenosine (m6A) modification is a highly dynamic and reversible process that is involved in a variety of essential biological processes. Using in vitro, in vivo, and multi-omics bioinformatics, the present study aims to determine the function and regulatory mechanisms of the long non-coding (lnc)RNA zinc ribbon domain-containing 1-antisense 1 (ZNRD1-AS1). METHODS: The RNAs that were bound to the m6A 'reader' were identified using YTH domain-containing 2 (YTHDC2) RNA immunoprecipitation (RIP)-sequencing. Utilizing methylated RIP PCR/quantitative PCR, pull-down, and RNA stability assays, m6A modification and ZNRD1-AS1 regulation were analyzed. Using bioinformatics, the expression levels and clinical significance of ZNRD1-AS1 in lung cancer were evaluated. Using fluorescent in situ hybridization and quantitative PCR assays, the subcellular location of ZNRD1-AS1 was determined. Using cell migration, proliferation, and angiogenesis assays, the biological function of ZNRD1-AS1 in lung cancer was determined. In addition, the tumor suppressor effect of ZNRD1-AS1 in vivo was validated using a xenograft animal model. Through bioinformatics analysis and in vitro assays, the downstream microRNAs (miRs) and competing endogenous RNAs were also predicted and validated. RESULTS: This study provided evidence that m6A modification mediates YTHDC2-mediated downregulation of ZNRD1-AS1 in lung cancer and cigarette smoke-exposed cells. Low levels of ZNRD1-AS1 expression were linked to adverse clinicopathological characteristics, immune infiltration, and prognosis. ZNRD1-AS1 overexpression was shown to suppress lung cancer cell proliferation, migration, and angiogenesis in vitro and in vivo, and to reduce tumor growth in nude mice. ZNRD1-AS1 expression was shown to be controlled by treatment of cells with either the methylation inhibitor 3-Deazaadenosine or the demethylation inhibitor Meclofenamic. Furthermore, the miR-942/tensin 1 (TNS1) axis was demonstrated to be the downstream regulatory signaling pathway of ZNRD1-AS1. CONCLUSIONS: ZNRD1-AS1 serves an important function and has clinical relevance in lung cancer. In addition, the findings suggested that m6A modification could mediate the regulation of the ZNRD1-AS1/miR-942/TNS1 axis via the m6A reader YTHDC2.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , ARN Largo no Codificante , Animales , Ratones , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratones Desnudos , Zinc/metabolismo , Hibridación Fluorescente in Situ , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pulmonares/genética , Movimiento Celular/genética , Pulmón/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , ARN Helicasas/genética , Tensinas/genética , Tensinas/metabolismo
10.
Sensors (Basel) ; 22(13)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35808359

RESUMEN

To study the dynamic changes of nutrient consumption and aflatoxin B1 (AFB1) accumulation in peanut kernels with fungal colonization, macro hyperspectral imaging technology combined with microscopic imaging was investigated. First, regression models to predict AFB1 contents from hyperspectral data ranging from 1000 to 2500 nm were developed and the results were compared before and after data normalization with Box-Cox transformation. The results indicated that the second-order derivative with a support vector regression (SVR) model using competitive adaptive reweighted sampling (CARS) achieved the best performance, with RC2 = 0.95 and RV2 = 0.93. Second, time-lapse microscopic images and spectroscopic data were captured and analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), and synchrotron radiation-Fourier transform infrared (SR-FTIR) microspectroscopy. The time-lapse data revealed the temporal patterns of nutrient loss and aflatoxin accumulation in peanut kernels. The combination of macro and micro imaging technologies proved to be an effective way to detect the interaction mechanism of toxigenic fungus infecting peanuts and to predict the accumulation of AFB1 quantitatively.


Asunto(s)
Aflatoxina B1 , Aflatoxinas , Aflatoxina B1/análisis , Aflatoxinas/análisis , Arachis/química , Arachis/microbiología , Contaminación de Alimentos/análisis , Análisis Espectral
11.
Nanotechnology ; 33(34)2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35580551

RESUMEN

Charge transport in insulating composites is fundamental to designing high performance in electrical breakdown strength processes. A fundamental understanding of the charge transport at nanoscale in insulating composites remains elusive. Herein, we fabricate two types of interfaces in epoxy (EP) composites (Al2O3/EP and bubble/EP, respectively). Then the local dynamic charge mobility behavior and charge density are explored usingin situKelvin probe force microscopy. After the external voltage in the horizontal direction is applied, significant differences are demonstrated in the evolution of charge transport for epoxy matrix, filler/bubble, and their interface, respectively. The interface between Al2O3and epoxy is easier to accumulate the negative charges and introduce shallow traps. Lots of positive charges are located around a bubble where deeper traps are present and could prevent charge migration. Thus, this work offers extended experimental support to understanding the mechanism of charge transport in dielectric composites.

12.
Front Immunol ; 13: 813173, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281048

RESUMEN

In the complement system, C3 is a central component in complement activation, immune defense and immune regulation. In all pathways of complement activation, the pivotal step is conversion of the component C3 to C3b and C3a, which is responsible to eliminate the pathogen and opsonization. In this study, we examined the immunological properties of C3 and its activated fragment C3a from Japanese flounder (Paralichthys olivaceus) (PoC3 and PoC3a), a teleost species with important economic value. PoC3 is composed of 1655 amino acid residues, contains the six domains and highly conserved GCGEQ sequence of the C3 family. We found that PoC3 expression occurred in nine different tissues and was upregulated by bacterial challenge. In serum, PoC3 was able to bind to a broad-spectrum of bacteria, and purified native PoC3 could directly kill specific pathogen. When PoC3 expression in Japanese flounder was knocked down by siRNA, serum complement activity was significantly decreased, and bacterial replication in fish tissues was significantly increased. Recombinant PoC3a (rPoC3a) exhibited apparent binding capacities to bacteria and Japanese flounder peripheral blood leukocytes (PBL) and induce chemotaxis of PBL. Japanese flounder administered rPoC3a exhibited enhanced resistance against bacterial infection. Taken together, these results indicate that PoC3 is likely a key factor of complement activation, and PoC3 and PoC3a are required for optimal defense against bacterial infection in teleost.


Asunto(s)
Infecciones Bacterianas , Enfermedades de los Peces , Lenguado , Animales , Bacterias , Activación de Complemento , Complemento C3/genética , Complemento C3/metabolismo
13.
Food Chem ; 382: 132340, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35139463

RESUMEN

The dynamics mechanisms regulating the growth and AFB1 production of Aspergillus flavus during its interactions with maize kernels remain unclear. In this study, shortwave infrared hyperspectral imaging (SWIR-HSI) and synchrotron radiation Fourier transform infrared (SR-FTIR) microspectroscopy were combined to investigate chemical and spatial-temporal changes in incremental damaged maize kernels induced by A. flavus infection at macroscopic and microscopic levels. SWIR-HSI was employed to extract spectral information of A. flavus growth and quantitatively detect AFB1 levels. Satisfactory full-spectrum models and simplified multispectral models were obtained respectively by partial least squares regression (PLSR) for three types of samples. Furthermore, SR-FTIR microspectroscopy coupled with two-dimensional correlation spectroscopy (2DCOS) was utilized to reveal the possible sequence of dynamic changes of nutrient loss and trace AFB1 in maize kernels. It exhibited new insights on how to quantify the spatio-temporal patterns of fungal infection and AFB1 accumulation on maize and provided theoretical basis for online sorting.


Asunto(s)
Aflatoxina B1 , Aspergillus flavus , Imágenes Hiperespectrales , Espectroscopía Infrarroja por Transformada de Fourier , Sincrotrones , Zea mays/química
14.
Front Pharmacol ; 12: 751107, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616303

RESUMEN

Background: Warfarin is a commonly used oral anticoagulant. It has a narrow therapeutic window and wide variation in individualized dosing, and is used clinically for the treatment of thromboembolic diseases. Due to the widespread use of traditional Chinese medicine (TCM) in China and the complex composition and diverse mechanisms of action of TCM, the combination of TCM and warfarin in patients has led to fluctuations in the international normalized ratio of warfarin or bleeding. To ensure rational clinical use, we summarize the TCMs with which warfarin interacts and the possible mechanisms, with a view to providing a clinical reference. Aim of the study: To summarize the mechanisms by which Chinese herbal medicines affect the enhancement or weakening of the anticoagulant effect of warfarin, to provide theoretical references for clinicians and pharmacists to use warfarin safely and rationally, and to avoid the adverse effects associated with the combination of Chinese herbal medicines and warfarin. Methods: A computerized literature search of electronic databases, including PubMed, MEDLINE, Cochrane Library, Web of Science (WOS), China National Knowledge Infrastructure (CNKI) and WANFANG Data was performed. Key words used in the literature search were "warfarin", "Chinese medicine", "traditional Chinese medicine", "Chinese patent medicine" etc. and their combinations in a time limit from January 1, 1990 to May 1, 2021. A total of 64 articles were obtained following the selection process, including clinical reports, pharmacological experiments and in vitro experiments which were reviewed to determine the mechanism of the anticoagulant effect of herbal medicine on warfarin. Results: The mechanisms affecting the anticoagulant effect of warfarin are complex, and herbal medicines may enhance and diminish the anticoagulant effect of warfarin through a variety of mechanisms; thus, clinical use needs to be cautious. Some herbal medicines have shown inconsistent results in both in vivo and ex vivo experiments, pharmacology and clinical studies, and should be the focus of future research. Conclusion: With the widespread use of TCM, the combination of warfarin and TCM is more common. This article will promote clinicians' knowledge and understanding of the TCMs which interact with warfarin, in order to avoid the occurrence of adverse clinical treatment processes, and improve the efficacy and safety.

15.
Int J Biol Sci ; 17(10): 2633-2651, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34326699

RESUMEN

Lung cancer is one of the most common types of carcinoma worldwide. Cigarette smoking is considered the leading cause of lung cancer. Aberrant expression of several YT521-B homology (YTH) family proteins has been reported to be closely associated with multiple cancer types. The present study aims to evaluate the function and regulatory mechanisms of the N6-methyladenosine (m6A) reader protein YTH domain containing 2 (YTHDC2) by in vitro, in vivo and bioinformatics analyses. The results revealed that YTHDC2 was reduced in lung cancer and cigarette smoke-exposed cells. Notably, bioinformatics and tissue arrays analysis demonstrated that decreased YTHDC2 was highly associated with smoking history, pathological stage, invasion depth, lymph node metastasis and poor outcomes. The in vivo and in vitro studies revealed that YTHDC2 overexpression inhibited the proliferation and migration of lung cancer cells as well as tumor growth in nude mice. Furthermore, YTHDC2 decreased expression was modulated by copy number deletion in lung cancer. Importantly, the cylindromatosis (CYLD)/NF-κB pathways were confirmed as the downstream signaling of YTHDC2, and this axis was mediated by m6A modification. The present results indicated that smoking-related downregulation of YTHDC2 was associated with enhanced proliferation and migration in lung cancer cells, and appeared to be regulated by DNA copy number variation. Importantly, YTHDC2 functions as a tumor suppressor through the CYLD/NF-κB signaling pathway, which is mediated by m6A modification.


Asunto(s)
Enzima Desubiquitinante CYLD/metabolismo , Neoplasias Pulmonares/genética , Subunidad p50 de NF-kappa B/metabolismo , ARN Helicasas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Variaciones en el Número de Copia de ADN , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , ARN Helicasas/genética , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Mol Med Rep ; 24(2)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34109431

RESUMEN

Cigarette smoking is the leading cause of all histological types of lung cancer, and the role that microRNAs (miRNAs) serve in its pathogenesis is being increasingly recognized. The aim of the present study was to investigate the role of miR­200b on migration in cigarette smoke­induced malignant transformed cells. In the present study, miR­200b expression was found to be increased in cigarette smoke (CS)­exposed BEAS­2B cells, lung cancer cell lines and tumor tissue samples. Using wound healing and Transwell migration assays, the migratory ability was shown to be increased in miR­200b­overexpressing cells, whereas miR­200b knockdown resulted in reduced migration. Additionally, the expression of E­Cadherin was downregulated, whereas that of N­Cadherin was upregulated in miR­200b mimic­transfected cells, suggesting an increase in epithelial­mesenchymal transition. Downstream, using four target gene prediction tools, six target genes of miR­200b were predicted, amongst which, ETS proto­oncogene 1 transcription factor (ETS1) was shown to be significantly associated with tumor invasion depth and negatively associated with miR­200b expression. The interaction between miR­200b and ETS1 was confirmed using a dual­luciferase reporter assay. Using rescue experiments, the increased migratory ability of the miR­200b­overexpressing cells was reversed by ETS1 overexpression. In summary, this study showed that miR­200b overexpression serves a carcinogenic role and promotes the migration of BEAS­2B cells following long­term exposure to CS by targeting ETS1.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Carcinoma de Células Escamosas/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , MicroARNs/genética , Proteína Proto-Oncogénica c-ets-1/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Línea Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Humanos , MicroARNs/metabolismo , Proteína Proto-Oncogénica c-ets-1/genética , Fumar/genética , Factores de Tiempo , Nicotiana/toxicidad , Regulación hacia Arriba/genética
17.
ACS Nano ; 15(4): 7094-7104, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33761739

RESUMEN

As environmental pollutants and possible carcinogens, carbon nanotubes (CNTs) have recently been found to induce carcinogenesis and tumor metastasis after long-term pulmonary exposure. However, whether CNT-induced carcinogenesis can be inherited and last for generations remains unclear. Herein, postchronic single-walled carbon nanotubes (SWCNTs) exposed human lung cell model (BEAS-2B cells) are established to investigate SWCNT-induced carcinogenesis. At a tolerated sublethal dose level, postchronic SWCNT exposure significantly increases the migration and invasion abilities of BEAS-2B cells, leading to malignant cell transformation. Notably, the malignant transformation of BEAS-2B cells is irreversible within a 60 day recovery period after SWCNT exposure, and the malignant transformation activities of cells gradually increase during the recovery period. Moreover, these transformed cells promote carcinogenesis in vivo, accompanied by a raised level of biomarkers of lung adenocarcinoma. Further mechanism analyses reveal that postchronic exposure to SWCNTs causes substantial DNA methylation and transcriptome dysregulation of BEAS-2B cells. Subsequent enrichment and clinical database analyses reveal that differentially expressed/methylated genes of BEAS-2B cells are enriched in cancer-related biological pathways. These results not only demonstrate that postchronic SWCNT-exposure-induced carcinogenesis is heritable but also uncover a mechanism from the perspective of DNA methylation.


Asunto(s)
Metilación de ADN , Nanotubos de Carbono , Línea Celular , Transformación Celular Neoplásica/genética , Células Epiteliales , Humanos , Nanotubos de Carbono/toxicidad
18.
Int J Med Sci ; 18(7): 1687-1698, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746585

RESUMEN

Background: Ischemic stroke is the second leading cause of death and disability worldwide, which needs to develop new pharmaceuticals for its prevention and treatment. Qingda granule (QDG), a traditional Chinese medicine formulation, could improve angiotensin II-induced brain injury and decrease systemic inflammation. In this study, we aimed to evaluate the neuroprotective effect of QDG against ischemia/reperfusion-induced cerebral injury and illustrate the potential mechanisms. Methods: The middle cerebral artery occlusion/reperfusion (MCAO/R) surgery in vivo and oxygen-glucose deprivation/reoxygenation (OGD/R) in vitro models were established. Ischemic infarct volume was quantified using magnetic resonance imaging (MRI). Neurobehavioral deficits were assessed using a five-point scale. Cerebral histopathology was determined by hematoxylin-eosin (HE) staining. Neuronal apoptosis was evaluated by TUNEL and immunostaining with NeuN antibodies. The protective effect of QDG on OGD/R-injured HT22 cells was determined by MTT assay and Hoechst 33258 staining. The expression of lncRNA GAS5, miR-137 and apoptosis-related proteins were investigated in MCAO/R-injured rats and in OGD/R-injured HT22 cells using RT-qPCR and western blot analysis. Results: QDG significantly reduced the ischemic infarct volume, which was accompanied with improvements in neurobehavioral deficits. Additionally, QDG significantly ameliorated cerebral histopathological changes and reduced neuron loss in MCAO/R-injured rats. Moreover, QDG improved growth and inhibited apoptosis of HT22 cells injured by OGD/R in vitro. Finally, QDG significantly decreased the expression of lncRNA GAS5, Bax and cleaved caspase3, whereas it increased miR-137 and Bcl-2 expression in MCAO/R-injured rats and in OGD/R-injured HT22 cells. Conclusion: QDG plays a neuroprotective role in ischemic stroke via regulation of the lncRNA GAS5/miR-137 signaling pathway.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/patología , Masculino , Ratones , MicroARNs/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/uso terapéutico , ARN Largo no Codificante/metabolismo , Ratas , Daño por Reperfusión/etiología , Daño por Reperfusión/patología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
19.
Biomed Res Int ; 2021: 4051504, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33490270

RESUMEN

Neonatal respiratory distress syndrome (NRDS) is a common disease that occurs in premature infants. However, the mechanisms underlying the disease remain unclear. microRNAs (miRNAs) have been indicated to play a crucial role in the development of NRDS. In this study, we aimed to explore the regulatory mechanisms of miR-296-5p in NRDS. The expression levels of miR-296-5p in preterm infants with NRDS were determined using quantitative reverse-transcription polymerase chain reaction (RT-qPCR). A549 cells were transfected with lentiviral vectors encoding miR-296-5p, and the transfection efficiency was determined using RT-qPCR. Flow cytometry and CCK8 assay were performed to measure apoptosis and proliferation of A549 cells, respectively. The protein levels of pulmonary surfactant SP-A (SFTPA1), SP-B, Wnt7b, and ß-catenin were measured using western blotting. We demonstrated an upregulation of miR-296-5p in NRDS. The miR-296-5p was successfully overexpressed in A549 cells via lentivirus transfection, and the upregulation of miR-296-5p inhibited cell proliferation and secretion of SP-A and SP-B and also induced downregulation of the Wnt7b/ß-catenin in vitro. Therefore, miR-296-5p inhibits cell proliferation and secretion of pulmonary surfactants in A549 cells via downregulation of Wnt7b/ß-catenin signaling.


Asunto(s)
MicroARNs , Surfactantes Pulmonares/metabolismo , Síndrome de Dificultad Respiratoria del Recién Nacido , Vía de Señalización Wnt/genética , Células A549 , Apoptosis/genética , Supervivencia Celular/genética , Regulación hacia Abajo/genética , Humanos , Recién Nacido , MicroARNs/genética , MicroARNs/metabolismo , Síndrome de Dificultad Respiratoria del Recién Nacido/genética , Síndrome de Dificultad Respiratoria del Recién Nacido/metabolismo
20.
Front Microbiol ; 11: 1743, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793174

RESUMEN

Translocation and assembly module (TAM) is a protein channel known to mediate the secretion of virulence factors during pathogen infection. Edwardsiella tarda is a Gram-negative bacterium that is pathogenic to a wide range of farmed fish and other hosts including humans. In this study, we examined the function of the two components of the TAM, TamA and TamB, of E. tarda (named tamA Et and tamB Et, respectively). TamAEt was found to localize on the surface of E. tarda and be recognizable by TamAEt antibody. Compared to the wild type, the tamA and tamB knockouts, TX01ΔtamA and TX01ΔtamB, respectively, were significantly reduced in motility, flagella formation, invasion into host cells, intracellular replication, dissemination in host tissues, and inducing host mortality. The lost virulence capacities of TX01ΔtamA and TX01ΔtamB were restored by complementation with the tamA Et and tamB Et genes, respectively. Furthermore, TX01ΔtamA and TX01ΔtamB were significantly impaired in the ability to survive under low pH and oxidizing conditions, and were unable to maintain their internal pH balance and cellular structures in acidic environments, which led to increased susceptibility to lysozyme destruction. Taken together, these results indicate that TamAEt and TamBEt are essential for the virulence of E. tarda and required for E. tarda to survive under stress conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...