Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 196: 661-667, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36801528

RESUMEN

Antibiotics are a kind of emerging contaminant in soil. Tetracycline (TC) and oxytetracycline (OTC) in soil are often detected, even with very high concentration in the soils of facility agriculture due to their good effect, low price and large usage. Copper (Cu) is common heavy metal pollutant in soil. The toxicity roles of TC, OTC and/or Cu in soil on a commonly consumed vegetable Capsicum annuum L. and its Cu accumulation were not clear till now. The results of pot experiment showed that the TC or OTC added in soil alone didn't produce poison effects for C. annuum after 6 weeks and 12 weeks growth reflected by some physiological index like SOD, CAT and APX activities changes, while the biomass changes affirmed them either. Cu contaminated soil significantly inhibited the growth of C. annuum. Furthermore, combined pollution of Cu with TC or OTC was with more serious suppression of C. annuum growth. The suppression role of OTC was heavier than TC in Cu and TC or OTC contaminated soil. Such phenomenon was relevant with the role of TC or OTC increased Cu concentration in C. annuum. The improvement role of TC or OTC on Cu accumulation in C. annuum caused by the increased extractable Cu concentration in soil. The study demonstrated that TC or OTC added in soil alone was without any toxicity to C. annuum. But they may aggravate the hurt of C. annuum caused by Cu through increased its accumulation from soil. Thus, such combine pollution should be avoided in safe agricultural product.


Asunto(s)
Capsicum , Oxitetraciclina , Contaminantes del Suelo , Antibacterianos , Cobre/toxicidad , Suelo , Oxitetraciclina/toxicidad , Tetraciclina , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
2.
J Hazard Mater ; 440: 129717, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35961076

RESUMEN

It is challenging to determine the mechanism involved in only Cd hyperaccumulation by Solanum nigrum L. owing to the uniqueness of the process. Isobaric tags for relative and absolute quantitation (iTRAQ) were used to explore the mechanism by which S. nigrum hyperaccumulates Cd by comparing the differentially expressed proteins (DEPs) for Cd and Zn accumulation (non-Zn hyperaccumulator). Based on the comparison between the DEPs associated with Cd and Zn accumulation, the relative metabolic pathways reflected by 17 co-intersecting specific proteins associated with Cd and Zn accumulation included phagosome, aminoacyl-tRNA biosynthesis, and carbon metabolism. Apart from the 17 co-intersecting specific proteins, the conjoint metabolic pathways reported by 21 co-intersecting specific proteins associated with Cd accumulation and 30 co-intersecting specific proteins associated with Zn accumulation, the most differentially expressed metabolic pathways might cause Cd TF (Translocation factor)> 1 and Zn TF< 1, including protein export, ribosome, amino sugar, and nucleotide sugar metabolism. The determined DEPs were verified using qRT-PCR with the four key proteins M1CW30, A0A3Q7H652, A0A0V0IFB9, and A0A0V0IAC4. The plasma membrane H+-ATPase protein was identified using western blotting. Some physiological indices for protein-related differences indirectly confirmed the above results. These results are crucial to further explore the mechanisms involved in Cd hyperaccumulation.


Asunto(s)
Contaminantes del Suelo , Solanum nigrum , Amino Azúcares/metabolismo , Biodegradación Ambiental , Cadmio/metabolismo , Carbono/metabolismo , Redes y Vías Metabólicas , Nucleótidos/metabolismo , Raíces de Plantas/metabolismo , ARN de Transferencia/metabolismo , Contaminantes del Suelo/metabolismo , Solanum nigrum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...