Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vet Microbiol ; 296: 110166, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38968694

RESUMEN

Streptococcus suis (S. suis) disease is a prevalent zoonotic infectious threat that elicits a systemic inflammatory response in both swine and humans, frequently culminating in high mortality rates. The excessive inflammation triggered by S. suis infection can precipitate tissue damage and sudden death; however, a comprehensive strategy to mitigate this inflammatory response remains elusive. Our study examines the role of NLRP6 in S. suis infection, with a particular focus on its involvement in pathogen regulation. A marked upregulation of NLRP6 was observed in peritoneal macrophages post-infection with S. suis SC19 strain, consequently activating the NLRP6 inflammasome. Furthermore, SC19 infection was found to augment the secretion of pro-inflammatory cytokines IL-1ß via NLRP6 activation, while NLRP6 deficiency mitigates the invasion and adhesion of SC19 to macrophages. In vivo models revealed that NLRP6 deletion enhanced survival rates of SC19-infected mice, alongside a reduction in tissue bacterial load and inflammatory cytokine levels. NLRP6-/- mice were shown to exhibit attenuated inflammatory responses in pulmonary, hepatic, and splenic tissues post-SC19 infection, as evidenced by lower inflammation scores. Flow cytometry analyses further substantiated that NLRP6 is involved in modulating macrophage and neutrophil recruitment during infection. Our findings suggest that NLRP6 negatively regulates host resistance against S. suis infection; its absence results in reduced mortality, bacterial colonization, and a milder inflammatory response. Elucidating the mechanism of NLRP6 in S. suis-induced inflammation provides novel insights and theoretical underpinnings for the prophylaxis and therapeutics of S. suis diseases.


Asunto(s)
Ratones Endogámicos C57BL , Infecciones Estreptocócicas , Streptococcus suis , Streptococcus suis/inmunología , Streptococcus suis/patogenicidad , Streptococcus suis/genética , Animales , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Ratones , Ratones Noqueados , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/microbiología , Inflamasomas/inmunología , Inflamasomas/genética , Citocinas/metabolismo , Citocinas/genética , Inflamación/inmunología , Femenino , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Receptores de Superficie Celular
2.
Vet Microbiol ; 295: 110161, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945021

RESUMEN

Streptococcus suis (S. suis) type 2 (SS2) is an important zoonotic pathogen causing severe neural infections in pigs and causes serious threat to public health. Inflammasome activation plays an important role in the host against microbial infection but the role of inflammasome activation in the blood-brain barrier (BBB) integrity during S. suis infection is rarely studied. This study investigated the mechanism by which S. suis-induced NLRP3 inflammasome activation led to BBB disruption. Our results showed that S. suis infection activated NLRP3 inflammasome in brain microvascular endothelial cells (BMECs) leading to the secretion of pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and chemokines (CCL-2 and CXCL-2) as well as the cleavage of Gasdermin D (GSDMD) which were significantly attenuated by inflammasome inhibitor MCC950. Furthermore, S. suis infection significantly downregulated expression of tight junctions (TJs) proteins and trans-endothelial electrical resistance (TEER) while NLRP3 inhibition rescued S. suis-induced degradation of TJs proteins and significantly reduced the number of S. suis crossing BBB in transwell infection model. Moreover, recombinant IL-1ß exacerbated the reduction of TJs proteins in BMECs. In murine S. suis-infection model, MCC950 reduced the bacterial load and the excessive inflammatory response in mice brain. In addition, the integrity of the BBB was protected with increased TJ proteins expression and decreased pathological injury after the inhibition of NLRP3 inflammasome, indicating NLRP3 inflammasome plays a destructive role in meningitis induced by S. suis. Our study expands the understanding on the role of NLRP3 inflammasome in bacterial meningitis, which provide the valuable information for the development of anti-infective agents targeting NLRP3 to treat bacterial meningitis.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Infecciones Estreptocócicas , Streptococcus suis , Animales , Barrera Hematoencefálica/microbiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Inflamasomas/inmunología , Ratones , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/microbiología , Células Endoteliales/microbiología , Citocinas/metabolismo , Citocinas/genética , Ratones Endogámicos C57BL , Encéfalo/microbiología , Encéfalo/inmunología , Femenino
3.
Vet Res ; 54(1): 65, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37605242

RESUMEN

Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen with the characteristics of high mortality and morbidity, which brings great challenges to prevent and control epidemic disease in the swine industry. Cathelicidins (CATH) are antimicrobial peptides with antimicrobial and immunomodulatory activities. In this study, bactericidal and anti-inflammatory effects of chicken cathelicidin-1 (CATH-1) were investigated in vitro and in vivo against SS2 infection. The results show that CATH-1 exhibited a better bactericidal effect compared to other species' cathelicidins including chickens (CATH-2, -3, and -B1), mice (CRAMP) and pigs (PMAP-36 and PR-39), which rapidly killed bacteria in 20 min by a time-killing curve assay. Furthermore, CATH-1 destroyed the bacterial morphology and affected bacterial ultrastructure as observed under electron microscopy. Moreover, CATH-1 antibacterial activity in vivo shows that CATH-1 increased survival rate of SS2-infected mice by 60% and significantly reduced the bacterial load in the lungs, liver, spleen, blood, and peritoneal lavage as well as the release of SS2-induced inflammatory cytokines including IL-1α, IL-1ß, IL-12, and IL-18. Importantly, CATH-1 did not show severe histopathological changes in mice. Further studies on the mechanism of anti-inflammatory activity show that CATH-1 not only reduced the inflammatory response through direct neutralization, but also by regulating the TLR2/4/NF-κB/ERK pathway. This study provides a scientific basis for the research and development of antimicrobial peptides as new antimicrobial agents.


Asunto(s)
Streptococcus suis , Animales , Ratones , Porcinos , Catelicidinas/farmacología , Pollos , Serogrupo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Péptidos Antimicrobianos
4.
Front Public Health ; 11: 1160629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601206

RESUMEN

Background: Health science popularization short video disseminates health information to the public in an understandable way about health information. Objective: To investigate the preferences of Chinese residents for health science popularization short videos and provide suggestions for optimizing the production of short videos. Methods: An online survey of Chinese people was conducted using a self-administered questionnaire, and a discrete choice experiment (DCE) was used to explore the public's preferences for health science popularization short videos. Results: A total of 618 respondents were included, of which 306 (45.51%) were male and 312 (50.49%) were female, 271 (43.85%) were aged 18-25, 239 (38.67%) were aged 26-60, and 108 (17.48%) were aged 60 and above. Whether the video is charged or not (46.891%) and the account subject (28.806%) were both considered important. The results of the DCE revealed that the participants considered video free of charge as the most significant attribute of health science popularization short videos (OR 3.433, 95% CI 3.243-3.633). Overall, participants preferred and were more willing to pay for health science popularization short videos with a hospital account subject (OR 1.192, 95% CI 1.116-1.274), with the form of graphic narration (OR 1.062, 95% CI 1.003-1.126), free of charge (OR 3.433, 95% CI 3.243-3.633), with the content that satisfies their needs (very much needed: OR 1.253, 95% CI 95% CI 1.197-1.311; generally needed: OR 1.078, 95% CI 1.029-1.129), with platform certification (OR 1.041, 95% CI 1.011-1.073), without commercial advertisements (OR 1.048, 95% CI 1.018-1.080), with simple-to-understand content (OR 1.071, 95% CI 1.040-1.104), and with video content that evokes fear or dread of illness in the viewer (OR 1.046, 95% CI 1.015-1.078). Conclusion: Participants favor free health popularization short videos, which are hospital accounts, with content that is illustrated, understandable, meets their needs, and can serve as a warning. In the future, the production of health popularization short videos should focus on improving the diversity and relevance of video content, making it as easy to understand to achieve good science popularization effects.


Asunto(s)
Conducta de Elección , Comportamiento del Consumidor , Información de Salud al Consumidor , Comunicación en Salud , Grabación en Video , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Pueblo Asiatico , China , Hospitales , Grabación en Video/economía , Comportamiento del Consumidor/economía , Información de Salud al Consumidor/economía , Información de Salud al Consumidor/métodos , Comunicación en Salud/economía , Comunicación en Salud/métodos
5.
Vet Res ; 53(1): 69, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36064470

RESUMEN

Chicken cathelicidin-2 (CATH-2) as a host defense peptide has been identified to have potent antimicrobial and immunomodulatory activities. Here, we reported the mechanism by which CATH-2 modulates NLRP3 inflammasome activation. Our results show that CATH-2 and ATP as a positive control induced secretion of IL-1ß and IL-1α in LPS-primed macrophages but did not affect secretion of IL-6, IL-12 and TNF-α. Furthermore, CATH-2 induced caspase-1 activation and oligomerization of apoptosis-associated speck-like protein containing a carboxy- terminal caspase recruitment domain (ASC), which is essential for NLRP3 inflammasome activation. However, CATH-2 failed to induce IL-1ß secretion in Nlrp3-/-, Asc-/- and Casp1-/- macrophages. Notably, IL-1ß and NLRP3 mRNA expression were not affected by CATH-2. In addition, CATH-2-induced NLRP3 inflammasome activation was mediated by K+ efflux but independent of the P2X7 receptor that is required for ATP-mediated K+ efflux. Gene interference of NEK7 kinase which has been identified to directly interact with NLRP3, significantly reduced IL-1ß secretion and caspase-1 activation induced by CATH-2. Furthermore, confocal microscopy shows that CATH-2 significantly induced lysosomal leakage with the diffusion of dextran fluorescent signal. Cathepsin B inhibitors completely abrogated IL-1ß secretion and caspase-1 activation as well as attenuating the formation of ASC specks induced by CATH-2. These results all indicate that CATH-2-induced activation of NLRP3 inflammasome is mediated by K+ efflux, and involves the NEK7 protein and cathepsin B. In conclusion, our study shows that CATH-2 acts as a second signal to activate NLRP3 inflammasome. Our study provides new insight into CATH-2 modulating immune response.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Adenosina Trifosfato , Animales , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Portadoras/genética , Caspasa 1 , Catepsina B/metabolismo , Pollos/metabolismo , Macrófagos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Catelicidinas
6.
Front Microbiol ; 13: 953720, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910608

RESUMEN

With the increasing bacterial resistance to traditional antibiotics, there is an urgent need for the development of alternative drugs or adjuvants of antibiotics to enhance antibacterial efficiency. The combination of antimicrobial peptides (AMPs) and traditional antibiotics is a potential alternative to enhance antibacterial efficiency. In this study, we investigated the synergistic bactericidal effect of AMPs, including chicken (CATH-1,-2,-3, and -B1), mice (CRAMP), and porcine (PMAP-36 and PR-39) in combination with conventional antibiotics containing ampicillin, tetracycline, gentamicin, and erythromycin against Staphylococcus aureus, Salmonella enteritidis, and Escherichia coli. The results showed that the minimum bactericidal concentration (MBC) of CATH-1,-3 and PMAP-36 was lower than 10 µM, indicating that these three AMPs had good bacterial activity against S. aureus, S. enteritidis, and E. coli. Then, the synergistic antibacterial activity of AMPs and antibiotics combination was determined by the fractional bactericidal concentration index (FBCI). The results showed that the FBCI of AMPs (CATH-1,-3 and PMAP-36) and erythromycin was lower than 0.5 against bacterial pathogens, demonstrating that they had a synergistic bactericidal effect. Furthermore, the time-killing kinetics of AMPs (CATH-1,-3 and PMAP-36) in combination with erythromycin showed that they had a continuous killing effect on bacteria within 3 h. Notably, the combination showed lower hemolytic activity and cytotoxicity to mammal cells compared to erythromycin and peptide alone treatment. In addition, the antibacterial mechanism of CATH-1 and erythromycin combination against E. coli was studied. The results of the scanning electron microscope showed that CATH-1 enhanced the antibacterial activity of erythromycin by increasing the permeability of bacterial cell membrane. Moreover, the results of bacterial migration movement showed that the combination of CATH-1 and erythromycin significantly inhibits the migration of E. coli. Finally, drug resistance analysis was performed and the results showed that CATH-1 delayed the emergence of E. coli resistance to erythromycin. In conclusion, the combination of CATH-1 and erythromycin has synergistic antibacterial activity and reduces the emergence of bacterial drug resistance. Our study provides valuable information to develop AMPs as potential substitutes or adjuvants for traditional antibiotics.

7.
Front Microbiol ; 13: 898961, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903472

RESUMEN

Phage therapy is an alternative approach to overcome the problem of multidrug resistance in bacteria. In this study, a bacteriophage named PZL-Ah152, which infects Aeromonas hydrophila, was isolated from sewage, and its biological characteristics and genome were studied. The genome contained 54 putative coding sequences and lacked known putative virulence factors, so it could be applied to phage therapy. Therefore, we performed a study to (i) investigate the efficacy of PZL-Ah152 in reducing the abundance of pathogenic A. hydrophila strain 152 in experimentally infected crucian carps, (ii) evaluate the safety of 12 consecutive days of intraperitoneal phage injection in crucian carps, and (iii) determine how bacteriophages impact the normal gut microbiota. The in vivo and in vitro results indicated that the phage could effectively eliminate A. hydrophila. Administering PZL-Ah152 (2 × 109 PFU) could effectively protect the fish (2 × 108 CFU/carp). Furthermore, a 12-day consecutive injection of PZL-Ah152 did not cause significant adverse effects in the main organs of the treated animals. We also found that members of the genus Aeromonas could enter and colonize the gut. The phage PZL-Ah152 reduced the number of colonies of the genus Aeromonas. However, no significant changes were observed in α-diversity and ß-diversity parameters, which suggested that the consumed phage had little effect on the gut microbiota. All the results illustrated that PZL-Ah152 could be a new therapeutic method for infections caused by A. hydrophila.

8.
Front Microbiol ; 13: 898559, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694317

RESUMEN

Streptococcus pneumoniae is an invasive pathogen with high morbidity and mortality in the immunocompromised children and elderly. NOD-like receptor family pyrin domain containing 6 (NLRP6) plays an important role in the host innate immune response against pathogen infections. Our previous studies have shown that NLRP6 plays a negative regulatory role in host defense against S. pneumoniae, but the underlying mechanism is still unclear. The further negative regulatory role of NLRP6 in the host was investigated in this study. Our results showed that NLRP6-/- mice in the lung had lower bacterial burdens after S. pneumoniae infection and expressed higher level of tight junction (TJ) protein occludin compared to WT mice, indicating the detrimental role of NLRP6 in the host defense against S. pneumoniae infection. Transcriptome analysis showed that genes related to leukocytes migration and recruitment were differentially expressed between wild-type (WT) and NLRP6 knockout (NLRP6-/-) mice during S. pneumoniae infection. Also, NLRP6-/- mice showed higher expression of chemokines including C-X-C motif chemokine ligand 1 (CXCL1) and 2 (CXCL2) and lower gene expression of complement C3a receptor 1 (C3aR1) and P-selectin glycoprotein ligand-1 (PSGL-1) which are the factors that inhibit the recruitment of neutrophils. Furthermore, NLRP6-/- neutrophils showed increased intracellular bactericidal ability and the formation of neutrophil extracellular traps (NETs) during S. pneumoniae infection. Taken together, our study suggests that NLRP6 is a negative regulator of neutrophil recruitment and function during S. pneumoniae infection. Our study provides a new insight to develop novel strategies to treat invasive pneumococcal infection.

9.
Dev Comp Immunol ; 131: 104377, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35189160

RESUMEN

Cathelicidins have antimicrobial and immunomodulatory activities. Previous studies have shown that chicken cathelicidin-2 (CATH-2) exerts strong anti-inflammatory activity through LPS neutralization. However, it is still unclear whether other intracellular signaling pathways are involved in CATH-2 immunomodulation. Therefore, the CATH-2-meadiated immune response was investigated in LPS-primed neutrophils. Firstly, inflammatory cytokines release was determined in LPS-primed neutrophils. The results showed that CATH-2 significantly promoted secretion of IL-1ß and IL-1α while IL-6 and TNF-α were not affected. IL-1ß is the key indicator of inflammasome activation. Next, NLRP3 inflammasome signaling pathway was explored using neutrophils of Nlrp3-/-, Asc-/- and Casp1-/- mice and the results showed that the CATH-2-enhanced IL-1ß release was completely abrogated, indicating it is NLRP3-dependent. Moreover, CATH-2 significantly induced activation of caspase-1 and gasdermin D (GSDMD) but did not affect LPS-induced mRNA expression of IL-1ß and NLRP3, demonstrating that CATH-2 serves as the second signal activating the NLRP3 inflammasome. Furthermore, CATH-2-mediated IL-1ß secretion and caspase-1 activation is dependent on potassium efflux but independent of P2X7R. In addition, other signaling pathways including JNK, ERK and SyK were investigated using different inhibitors and the results showed that these signaling pathway inhibitors partially attenuated CATH-2-enhanced IL-1ß secretion, especially the JNK inhibitor. Finally, the role of serine protease in CATH-2-mediated NLRP3 inflammasome activation was investigated in neutrophils and the results showed that serine protease activity is involved in CATH-2-enhanced IL-1ß secretion and caspase-1 activation. In conclusion, after LPS priming in neutrophils, CATH-2 can be an agonist of the NLRP3 inflammasome. Our study increases the understanding on immunomodulatory effects of chicken cathelicidins and provides new insight on chicken cathelicidins-mediated immune response.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Péptidos Catiónicos Antimicrobianos , Caspasa 1/metabolismo , Catelicidinas/metabolismo , Pollos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neutrófilos/metabolismo , Serina Proteasas/metabolismo
10.
Arch Virol ; 167(2): 669-673, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35075514

RESUMEN

Aeromonas hydrophila (A. hydrophila) is an opportunistic pathogen of fish, humans, and livestock, and has a severe negative impact on aquaculture development. Phage therapy is considered an alternative strategy for controlling bacterial infections and contamination. In this study, we isolated and characterized the genomes of two A. hydrophila-specific phages, PZL-Ah1 and PZL-Ah8, which, based on transmission electron microscopy, were identified as members of the family Podoviridae. Both of these phages had a relatively narrow host range, with lytic activity against Aeromonas spp. strains. Whole-genome sequence analysis revealed that PZL-Ah1 and PZL-Ah8 have a double-stranded DNA genome of 38,641 bp and 40,855 bp in length, with a GC content of 53.68% and 51.89%, respectively. Forty-four open reading frames (ORFs) were predicted in PZL-Ah1, and 52 were predicted in PZL-Ah8. Twenty-eight (63.6%) ORFs in PZL-Ah1 and 29 (55.8%) ORFs in PZL-Ah8 were predicted to encode functional proteins with homologs in the NCBI database, while the remaining ORFs were classified as encoding hypothetical proteins with unknown functions. A comparison with known phage genes suggested that ORF 02, ORF 29, and ORF 04 of PZL-Ah1 and ORF 2 and ORF 4 of PZL-Ah8 are involved in host cell lysis. This study expands the phage genome database and provides good candidates for phage typing applications.


Asunto(s)
Bacteriófagos , Podoviridae , Aeromonas hydrophila/genética , Animales , Bacteriófagos/genética , ADN Viral/genética , Genoma Viral , Humanos , Sistemas de Lectura Abierta , Filogenia
11.
Microb Pathog ; 162: 105374, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34968644

RESUMEN

Aeromonas hydrophila (A. hydrophila) is an opportunistic pathogen of fish-human-livestock, which poses a threat to the development of aquaculture. Lytic phage has long been considered as an effective bactericidal agent. However, the rapid development of phage resistance seriously hinders the continuous application of lytic phages. In our study, a new bacteriophage vB_ AhaP_PZL-Ah8 was isolated from sewage and its characteristics and genome were investigated. Phage vB_ AhaP_PZL-Ah8 has been classified as the member of the Podoviridae family, which exhibited the latent period was about 30 min. As revealed from the genomic sequence analysis, vB_ AhaP_PZL-Ah8 covered a double-stranded genome of 40,855 bp (exhibiting 51.89% G + C content), with encoding 52 predicted open reading frames (ORFs). The results suggested that the combination of vB_ AhaP_PZL-Ah8 and another A. hydrophila phage vB_ AhaP_PZL-Ah1 could improve the therapeutic efficacy both in vitro and in vivo. The resistance mutation frequency of A. hydrophila cells infected with the mixture phage (vB_ AhaP_PZL-Ah8+ vB_ AhaP_PZL-Ah1) was significantly lower than cells treated with single phage (P <0.01). Phage therapy in vivo showed that the survival rate in the mixture phage treatment group was significantly higher than that in single phage treatment group.


Asunto(s)
Bacteriófagos , Aeromonas hydrophila , Animales , Acuicultura , Bacteriófagos/genética , Genoma Viral , Humanos , Sistemas de Lectura Abierta
12.
Front Microbiol ; 11: 585261, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329451

RESUMEN

Citrobacter freundii refers to a fish pathogen extensively reported to be able to cause injury and high mortality. Phage therapy is considered a process to alternatively control bacterial infections and contaminations. In the present study, the isolation of a virulent bacteriophage IME-JL8 isolated from sewage was presented, and such bacteriophage was characterized to be able to infect Citrobacter freundii specifically. Phage IME-JL8 has been classified as the member of the Siphoviridae family, which exhibits the latent period of 30-40 min. The pH and thermal stability of phage IME-JL8 demonstrated that this bacteriophage achieved a pH range of 4-10 as well as a temperature range of 4, 25, and 37°C. As revealed from the results of whole genomic sequence analysis, IME-JL8 covers a double-stranded genome of 49,838 bp (exhibiting 47.96% G+C content), with 80 putative coding sequences contained. No bacterial virulence- or lysogenesis-related ORF was identified in the IME-JL8 genome, so it could be applicable to phage therapy. As indicated by the in vitro experiments, phage IME-JL8 is capable of effectively removing bacteria (the colony count decreased by 6.8 log units at 20 min), and biofilm can be formed in 24 h. According to the in vivo experiments, administrating IME-JL8 (1 × 107 PFU) was demonstrated to effectively protect the fish exhibiting a double median lethal dose (2 × 109 CFU/carp). Moreover, the phage treatment led to the decline of pro-inflammatory cytokines in carp with lethal infections. IME-JL8 was reported to induce efficient lysis of Citrobacter freundii both in vitro and in vivo, thereby demonstrating its potential as an alternative treatment strategy for infections attributed to Citrobacter freundii.

13.
Microb Pathog ; 149: 104577, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33122048

RESUMEN

Aeromous veronii is a severe pathogen that can infect aquatic organisms and mammals also causes irreparable damage to fish aquaculture. Analysis of the results of epidemiological investigations have revealed that its tolerance to drugs and the virulence of A. veronii have increased in recent years. Most of the researches on A. veronii focuse on the strain isolation, identification, and drug susceptibility. However, we do not know so much about the molecular mechanism of the pathogenesis on A. veronii. Here we identified and obtained the highly expressed TH0426 Nucleoside Diphosphate Kinases (NDK) of A. veronii. We first constructed a mutant strain (△-ndk) by generating an in-frame deletion of the ndk gene, to investigate the functional role in A. veronii TH0426. The ability in the adhesion and invasion of EPC cells and biofilm formation significantly reduced of the △-ndk strain. The motility test showed that the ndk gene affected on the swimming ability, while did not affect the swarming motility. Compared with the wild-type strain TH0426, the pathogenicity of △-ndk strain to zebrafish reduced severely. Besides, the ndk gene has affected the apoptosis rate of A. veronii TH0426. These results would help to demonstrate the function of ndk further and realize the pathogenesis on A. veronii.


Asunto(s)
Aeromonas veronii , Nucleósido-Difosfato Quinasa , Animales , Acuicultura , Nucleósido-Difosfato Quinasa/genética , Virulencia , Pez Cebra
14.
Microb Pathog ; 133: 103552, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31121269

RESUMEN

Aeromonas veronii is an opportunistic pathogen that is capable of infecting both aquatic livestock and mammals. Natural infection in fishes results in irreparable damage to the aquaculture industry. In this study, we sought to investigate whether recombinant Lactobacillus casei expressing the outer membrane protein W (OmpW) of A.veronii could elicit protective immunity against A.veronii infections. We generated two recombinant Lactobacillus casei (L.casei) strains expressing the OmpW of A.veronii (surface-displayed or secreted) and evaluated the effect on immune responses in a fish model. A 600-bp gene fragment was subcloned into the L.casei expression plasmids pPG-1 (surface-displayed) and pPG-2 (secreted). Expression of the recombinant OmpW protein was also confirmed by Western blot and immunofluorescence assays. Common carp immunized with Lc-pPG-1- OmpW and Lc-pPG-2- OmpW via oral administration elicited high serum specific antibody titers and high LZM, ACP, and SOD activities. High levels of the IL-10, IL-ß, IFN-γ, and TNF-α genes in different organs indicated that the inflammatory response and cell immune response were triggered. Additionally, when immunized fish were challenged with A.veronii, Lc-pPG1-OmpW and Lc-pPG2-OmpW demonstrated 40% and 50% protective efficacy. These data indicate that the combination of OmpW delivery and the lactic acid bacteria (LAB) approach may be a promising mucosal therapeutic strategy for treatment of A.veronii.


Asunto(s)
Aeromonas veronii/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Carpas/inmunología , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Inmunización/veterinaria , Lacticaseibacillus casei/metabolismo , Administración Oral , Aeromonas veronii/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Proteínas de la Membrana Bacteriana Externa/administración & dosificación , Proteínas de la Membrana Bacteriana Externa/genética , Vacunas Bacterianas , Secuencia de Bases , Carpas/microbiología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Enfermedades de los Peces/inmunología , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Infecciones por Bacterias Gramnegativas/inmunología , Inmunidad Celular , Inmunidad Humoral , Interferón gamma/genética , Interleucina-10/genética , Intestinos/microbiología , Lacticaseibacillus casei/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Factor de Necrosis Tumoral alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...