Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cyborg Bionic Syst ; 5: 0125, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841725

RESUMEN

Depression is a common and severely debilitating neuropsychiatric disorder. Multiple studies indicate a strong correlation between the occurrence of immunological inflammation and the presence of depression. The basolateral amygdala (BLA) is crucial in the cognitive and physiological processing and control of emotion. However, due to the lack of detection tools, the neural activity of the BLA during depression is not well understood. In this study, a microelectrode array (MEA) based on the shape and anatomical location of the BLA in the brain was designed and manufactured. Rats were injected with lipopolysaccharide (LPS) for 7 consecutive days to induce depressive behavior. We used the MEA to detect neural activity in the BLA before modeling, during modeling, and after LPS administration on 7 consecutive days. The results showed that after LPS treatment, the spike firing of neurons in the BLA region of rats gradually became more intense, and the local field potential power also increased progressively. Further analysis revealed that after LPS administration, the spike firing of BLA neurons was predominantly in the theta rhythm, with obvious periodic firing characteristics appearing after the 7 d of LPS administration, and the relative power of the local field potential in the theta band also significantly increased. In summary, our results suggest that the enhanced activity of BLA neurons in the theta band is related to the depressive state of rats, providing valuable guidance for research into the neural mechanisms of depression.

2.
ACS Sens ; 9(6): 2877-2887, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38779969

RESUMEN

Precise assessment of wakefulness states during sevoflurane anesthesia and timely arousal are of paramount importance to refine the control of anesthesia. To tackle this issue, a bidirectional implantable microelectrode array (MEA) is designed with the capability to detect electrophysiological signal and perform in situ deep brain stimulation (DBS) within the dorsomedial hypothalamus (DMH) of mice. The MEA, modified with platinum nanoparticles/IrOx nanocomposites, exhibits exceptional characteristics, featuring low impedance, minimal phase delay, substantial charge storage capacity, high double-layer capacitance, and longer in vivo lifetime, thereby enhancing the sensitivity of spike firing detection and electrical stimulation (ES) effectiveness. Using this MEA, sevoflurane-inhibited neurons and sevoflurane-excited neurons, together with changes in the oscillation characteristics of the local field potential within the DMH, are revealed as indicative markers of arousal states. During the arousal period, varying-frequency ESs are applied to the DMH, eliciting distinct arousal effects. Through in situ detection and stimulation, the disparity between these outcomes can be attributed to the influence of DBS on different neurons. These advancements may further our understanding of neural circuits and their potential applications in clinical contexts.


Asunto(s)
Estimulación Encefálica Profunda , Microelectrodos , Sevoflurano , Animales , Sevoflurano/farmacología , Ratones , Estimulación Encefálica Profunda/instrumentación , Neuronas/efectos de los fármacos , Neuronas/fisiología , Masculino , Anestésicos por Inhalación , Estimulación Eléctrica , Platino (Metal)/química , Ratones Endogámicos C57BL
3.
Cyborg Bionic Syst ; 5: 0123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784125

RESUMEN

The globus pallidus internus (GPi) was considered a common target for stimulation in Parkinson's disease (PD). Located deep in the brain and of small size, pinpointing it during surgery is challenging. Multi-channel microelectrode arrays (MEAs) can provide micrometer-level precision functional localization, which can maximize the surgical outcome. In this paper, a 64-channel MEA modified by platinum nanoparticles with a detection site impedance of 61.1 kΩ was designed and prepared, and multiple channels could be synchronized to cover the target brain region and its neighboring regions so that the GPi could be identified quickly and accurately. The results of the implant trajectory indicate that, compared to the control side, there is a reduction in local field potential (LFP) power in multiple subregions of the upper central thalamus on the PD-induced side, while the remaining brain regions exhibit an increasing trend. When the MEA tip was positioned at 8,700 µm deep in the brain, the various characterizations of the spike signals, combined with the electrophysiological characteristics of the ß-segmental oscillations in PD, enabled MEAs to localize the GPi at the single-cell level. More precise localization could be achieved by utilizing the distinct characteristics of the internal capsule (ic), the thalamic reticular nucleus (Rt), and the peduncular part of the lateral hypothalamus (PLH) brain regions, as well as the relative positions of these brain structures. The MEAs designed in this study provide a new detection method and tool for functional localization of PD targets and PD pathogenesis at the cellular level.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38656860

RESUMEN

In neurodegenerative disorders, neuronal firing patterns and oscillatory activity are remarkably altered in specific brain regions, which can serve as valuable biomarkers for the identification of deep brain regions. The subthalamic nucleus (STN) has been the primary target for DBS in patients with Parkinson's disease (PD). In this study, changes in the spike firing patterns and spectral power of local field potentials (LFPs) in the pre-STN (zona incerta, ZI) and post-STN (cerebral peduncle, cp) regions were investigated in PD rats, providing crucial evidence for the functional localization of the STN. Sixteen-channel microelectrode arrays (MEAs) with sites distributed at different depths and widths were utilized to record neuronal activities. The spikes in the STN exhibited higher firing rates than those in the ZI and cp. Furthermore, the LFP power in the delta band in the STN was the greatest, followed by that in the ZI, and was greater than that in the cp. Additionally, increased LFP power was observed in the beta bands in the STN. To identify the best performing classification model, we applied various convolutional neural networks (CNNs) based on transfer learning to analyze the recorded raw data, which were processed using the Gram matrix of the spikes and the fast Fourier transform of the LFPs. The best transfer learning model achieved an accuracy of 95.16%. After fusing the spike and LFP classification results, the time precision for processing the raw data reached 500 ms. The pretrained model, utilizing raw data, demonstrated the feasibility of employing transfer learning for training models on neural activity. This approach highlights the potential for functional localization within deep brain regions.


Asunto(s)
Estimulación Encefálica Profunda , Microelectrodos , Ratas Sprague-Dawley , Núcleo Subtalámico , Núcleo Subtalámico/fisiopatología , Animales , Ratas , Masculino , Modelos Animales de Enfermedad , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/rehabilitación , Potenciales de Acción/fisiología , Algoritmos , Sistemas de Computación , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/rehabilitación , Aprendizaje Automático
5.
Front Bioeng Biotechnol ; 12: 1376151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633666

RESUMEN

The striatum plays a crucial role in studying epilepsy, as it is involved in seizure generation and modulation of brain activity. To explore the complex interplay between the striatum and epilepsy, we engineered advanced microelectrode arrays (MEAs) specifically designed for precise monitoring of striatal electrophysiological activities in rats. These observations were made during and following seizure induction, particularly three and 7 days post-initial modeling. The modification of graphene oxide (GO)/poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)/platinu-m nanoparticles (PtNPs) demonstrated a marked reduction in impedance (10.5 ± 1.1 kΩ), and maintained exceptional stability, with impedance levels remaining consistently low (23 kΩ) even 14 days post-implantation. As seizure intensity escalated, we observed a corresponding increase in neuronal firing rates and local field potential power, with a notable shift towards higher frequency peaks and augmented inter-channel correlation. Significantly, during the grand mal seizures, theta and alpha bands became the dominant frequencies in the local field potential. Compared to the normal group, the spike firing rates on day 3 and 7 post-modeling were significantly higher, accompanied by a decreased firing interval. Power in both delta and theta bands exhibited an increasing trend, correlating with the duration of epilepsy. These findings offer valuable insights into the dynamic processes of striatal neural activity during the initial and latent phases of temporal lobe epilepsy and contribute to our understanding of the neural mechanisms underpinning epilepsy.

6.
J Zhejiang Univ Sci B ; : 1-21, 2024 Feb 12.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38423536

RESUMEN

Deep brain stimulation (DBS), including optical stimulation and electrical stimulation, has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders. Advances in DBS microsystems based on implantable microelectrode array (MEA) probes have opened up new opportunities for closed-loop DBS (CL-DBS) in situ. This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously. Despite the success and rapid utilization of MEA probe-based CL-DBS microsystems, key challenges, including excessive wired communication, need to be urgently resolved. In this review, we considered recent advances in MEA probe-based wireless CL-DBS microsystems and outlined the major issues and promising prospects in this field. This technology has the potential to offer novel therapeutic options for psychiatric disorders in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...