Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Mol Vis ; 30: 123-136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601019

RESUMEN

Purpose: Danio rerio zebrafish constitute a popular model for studying lens development and congenital cataracts. However, the specific deletion of a gene with a Cre/LoxP system in the zebrafish lens is unavailable because of the lack of a lens-Cre-transgenic zebrafish. This study aimed to generate a transgenic zebrafish line in which Cre recombinase was specifically expressed in the lens. Methods: The pTol2 cryaa:Cre-polyA-cryaa:EGFP (enhanced green fluorescent protein) plasmid was constructed and co-injected with Tol2-transposase into one-to-two-cell-stage wild-type (WT) zebrafish embryos. Whole-mount in situ hybridization (ISH), tissue section, hematoxylin and eosin staining, a Western blot, a split-lamp observation, and a grid transmission assay were used to analyze the Cre expression, lens structure, and lens transparency of the transgenic zebrafish. Results: In this study, we generated a transgenic zebrafish line, zTg(cryaa:Cre-cryaa:EGFP), in which Cre recombinase and EGFP were driven by the lens-specific cryaa promoter. zTg(cryaa:Cre-cryaa:EGFP) began to express Cre and EGFP specifically in the lens at the 22 hpf stage, and this ectopic Cre could efficiently and specifically delete the red fluorescent protein (RFP) signal from the lens when zTg(cryaa:Cre-cryaa:EGFP) embryos were injected with the loxP-flanked RFP plasmid. The overexpression of Cre and EGFP did not impair zebrafish development or lens transparency. Accordingly, this zTg(cryaa:Cre-cryaa:EGFP) zebrafish line is a useful tool for gene editing, specifically with zebrafish lenses. Conclusions: We established a zTg(cryaa:Cre-cryaa:EGFP) zebrafish line that can specifically express an active Cre recombinase in lens tissues. This transgenic zebrafish line can be used as a tool to specifically manipulate a gene in zebrafish lenses.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/metabolismo , Animales Modificados Genéticamente/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/genética , Plásmidos , Regiones Promotoras Genéticas
2.
Sensors (Basel) ; 24(2)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38257482

RESUMEN

This paper proposes the Lock-Position-Based RFID Adaptive Parallel Collision Tree (LAPCT) algorithm to address the issues of excessive time slots required in the identification process of collision tree algorithms for multiple tags and the high communication complexity between the reader and multiple tags. The LAPCT algorithm adopts a single-query multiple-response mechanism and dynamically divides the response sub-cycle numbers in the identification cycle based on an adaptive strategy. It uses Manchester encoding to lock collision positions and generate a common query prefix, effectively reducing the number of reader queries. This reduction in queries decreases the total number of required time slots and transmitted bits during the reader-tag communication process, thereby improving the efficiency of multiple tag recognition. Theoretical and simulation experiments demonstrate that compared to similar algorithms, the LAPCT algorithm achieves a maximum reduction of 37% in total time slots required, a maximum improvement of 30% in recognition efficiency, and a maximum reduction of 90% in communication complexity. Furthermore, with an increase in the number of tags, the performance advantages of the LAPCT algorithm become more pronounced, making it suitable for large-scale tag scenarios.

3.
Plant Physiol ; 194(2): 902-917, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37934825

RESUMEN

Maize (Zea mays L.) is one of the most important crops worldwide. Photoperiod, light quality, and light intensity in the environment can affect the growth, development, yield, and quality of maize. In Arabidopsis (Arabidopsis thaliana), cryptochromes are blue-light receptors that mediate the photocontrol of stem elongation, leaf expansion, shade tolerance, and photoperiodic flowering. However, the function of maize cryptochrome ZmCRY in maize architecture and photomorphogenic development remains largely elusive. The ZmCRY1b transgene product can activate the light signaling pathway in Arabidopsis and complement the etiolation phenotype of the cry1-304 mutant. Our findings show that the loss-of-function mutant of ZmCRY1b in maize exhibits more etiolation phenotypes under low blue light and appears slender in the field compared with wild-type plants. Under blue and white light, overexpression of ZmCRY1b in maize substantially inhibits seedling etiolation and shade response by enhancing protein accumulation of the bZIP transcription factors ELONGATED HYPOCOTYL 5 (ZmHY5) and ELONGATED HYPOCOTYL 5-LIKE (ZmHY5L), which directly upregulate the expression of genes encoding gibberellin (GA) 2-oxidase to deactivate GA and repress plant height. More interestingly, ZmCRY1b enhances lodging resistance by reducing plant and ear heights and promoting root growth in both inbred lines and hybrids. In conclusion, ZmCRY1b contributes blue-light signaling upon seedling de-etiolation and integrates light signals with the GA metabolic pathway in maize, resulting in lodging resistance and providing information for improving maize varieties.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Criptocromos/genética , Criptocromos/metabolismo , Arabidopsis/metabolismo , Giberelinas/farmacología , Giberelinas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Plantones/metabolismo , Hipocótilo , Transducción de Señal , Luz , Regulación de la Expresión Génica de las Plantas
4.
Sensors (Basel) ; 23(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36904767

RESUMEN

With the emergence of more and more computing-intensive and latency-sensitive applications, insufficient computing power and energy of user devices has become a common phenomenon. Mobile edge computing (MEC) is an effective solution to this phenomenon. MEC improves task execution efficiency by offloading some tasks to edge servers for execution. In this paper, we consider a device-to-device technology (D2D)-enabled MEC network communication model, and study the subtask offloading strategy and the transmitting power allocation strategy of users. The objective function is to minimize the weighted sum of the average completion delay and average energy consumption of users, which is a mixed integer nonlinear problem. We first propose an enhanced particle swarm optimization algorithm (EPSO) to optimize the transmit power allocation strategy. Then, we utilize the Genetic Algorithm (GA) to optimize the subtask offloading strategy. Finally, we propose an alternate optimization algorithm (EPSO-GA) to jointly optimize the transmit power allocation strategy and the subtask offloading strategy. The simulation results show that the EPSO-GA outperforms other comparative algorithms in terms of the average completion delay, average energy consumption, and average cost. In addition, no matter how the weight coefficients of delay and energy consumption change, the average cost of the EPSO-GA is the least.

5.
Biogerontology ; 24(5): 813-827, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36738354

RESUMEN

SARS-Cov-2 infection, which has caused the COVID-19 global pandemic, triggers cellular senescence. In this study, we investigate the role of the SARS-COV-2 spike protein (S-protein) in regulating the senescence of RPE cells. The results showed that administration or overexpression of S-protein in ARPE-19 decreased cell proliferation with cell cycle arrest at the G1 phase. S-protein increased SA-ß-Gal positive ARPE-19 cells with high expression of P53 and P21, senescence-associated inflammatory factors (e.g., IL-1ß, IL-6, IL-8, ICAM, and VEGF), and ROS. Elimination of ROS by N-acetyl cysteine (NAC) or knocking down p21 by siRNA diminished S-protein-induced ARPE cell senescence. Both administrated and overexpressed S-protein colocalize with the ER and upregulate ER-stress-associated BIP, CHOP, ATF3, and ATF6 expression. S-protein induced P65 protein nuclear translocation. Inhibition of NF-κB by bay-11-7082 reduced S-protein-mediated expression of senescence-associated factors. Moreover, the intravitreal injection of S-protein upregulates senescence-associated inflammatory factors in the zebrafish retina. In conclusions, the S-protein of SARS-Cov-2 induces cellular senescence of ARPE-19 cells in vitro and the expression of senescence-associated cytokines in zebrafish retina in vivo likely by activating ER stress, ROS, and NF-κb. These results may uncover a potential association between SARS-cov-2 infection and development of AMD.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Glicoproteína de la Espiga del Coronavirus/metabolismo , Especies Reactivas de Oxígeno/metabolismo , FN-kappa B/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra , SARS-CoV-2/metabolismo , Senescencia Celular/fisiología
6.
FASEB J ; 37(3): e22832, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36826429

RESUMEN

The dysfunction of CRALBP, a key regulator of the visual cycle, is associated with retinitis punctata albescens characterized by night vision loss and retinal degeneration. In this paper, we find that the expression of CRALBP is regulated by heat shock protein 90 (HSP90). Inhibition of HSP90α or HSP90ß expression by using the CRISPR-Cas9 technology downregulates CRALBP's mRNA and protein expression in ARPE-19 cells by triggering the degradation of transcription factor SP1 in the ubiquitin-proteasome pathway. SP1 can bind to CRALBP's promoter, and inhibition of SP1 by its inhibitor plicamycin or siRNA downregulates CRALBP's mRNA expression. In the zebrafish, inhibition of HSP90 by the intraperitoneal injection of IPI504 reduces the thickness of the retinal outer nuclear layer and Rlbp1b mRNA expression. Interestingly, the expression of HSP90, SP1, and CRALBP is correlatedly downregulated in the senescent ARPE-19 and Pig primary RPE cells in vitro and in the aged zebrafish and mouse retinal tissues in vivo. The aged mice exhibit the low night adaption activity. Taken together, these data indicate that the HSP90-SP1 is a novel regulatory axis of CRALBP transcriptional expression in RPE cells. The age-mediated downregulation of the HSP90-SP1-CRALBP axis is a potential etiology for the night vision reduction in senior people.


Asunto(s)
Visión Ocular , Pez Cebra , Ratones , Animales , Porcinos , Pez Cebra/metabolismo , Regulación hacia Abajo , Retina/metabolismo , Adaptación a la Oscuridad , Proteínas HSP90 de Choque Térmico/metabolismo
7.
J Integr Plant Biol ; 65(4): 888-894, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36394421

RESUMEN

In Arabidopsis, although studies have demonstrated that phytochrome A (phyA) and phyB are involved in blue light signaling, how blue light-activated phytochromes modulate the activity of the CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1)-SUPPRESSOR OF PHYA-105 (SPA1) E3 complex remains largely unknown. Here, we show that phyA responds to early and weak blue light, whereas phyB responds to sustainable and strong blue light. Activation of both phyA and phyB by blue light inhibits SPA1 activity. Specifically, blue light irradiation promoted the nuclear import of both phytochromes to stimulate their binding to SPA1, abolishing SPA1's interaction with LONG HYPOCOTYL 5 (HY5) to release HY5, which promoted seedling photomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Fitocromo/genética , Fitocromo/metabolismo , Proteínas de Arabidopsis/metabolismo , Luz , Fitocromo A/genética , Fitocromo A/metabolismo , Proteínas de Ciclo Celular/metabolismo
8.
Front Microbiol ; 14: 1320853, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38249462

RESUMEN

Intensification of urban construction has gradually destroyed human habitat ecosystems. Plants, which serve as the foundation of ecosystems, require green, low-cost, and effective technologies to sustain their growth in stressful environments. A total of 286 keywords and 10 clusters from the bibliometric analysis of 529 articles (1999-2023) indicate the increasing importance of research on microbial functionality in landscape ecosystems. Phosphate solubilizing microorganisms (PSMs) also improve plant disease resistance, adaptability, and survival. PSMs are widely used to promote plant growth and improve ecological quality. They can increase the availability of phosphorus in the soil and reduce the dependence of plants on chemical fertilizers. Microorganisms regulate phosphorus as key tools in landscape ecosystems. Most importantly, in urban and rural landscape practices, PSMs can be applied to green spaces, residential landscapes, road greening, and nursery planting, which play significant roles in improving vegetation coverage, enhancing plant resistance, improving environmental quality, and mitigating the heat island effect. PSMs are also helpful in restoring the ecological environment and biodiversity of polluted areas, such as brownfields, to provide residents with a more liveable living environment. Therefore, the multiple efficacies of PSM are expected to play increasingly important roles in the construction of urban and rural landscape ecosystems.

9.
Front Oncol ; 13: 1256747, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38164196

RESUMEN

Objective: Breast cancer is one of the most common causes of death among women. Statins, typically used for cholesterol management, have been hypothesized to reduce recurrence and mortality rates in breast cancer. However, this association remains a subject of debate. This study evaluates the potential impact of statins on breast cancer recurrence and mortality. Methods: A comprehensive search was conducted in the PubMed, EMBASE, and Cochrane databases for articles published up to June 2023. These articles examined the effect of statins on breast cancer recurrence and mortality both before and after diagnosis. The analysis was performed using random-effects models, calculating pooled hazard ratios (HR) and their 95% confidence intervals (CI). Results: A total of 31 cohort studies, involving 261,834 female breast cancer patients, were included in this analysis. It was found that statin use prior to diagnosis was associated with a decrease in overall mortality (HR, 0.8; 95% CI, 0.69-0.93; I2 = 77.6%; P = 0.001) and breast cancer-specific mortality (HR, 0.76; 95% CI, 0.67-0.87; I2 = 72.7%; P = 0.005). Additionally, statin use after diagnosis was observed to reduce the recurrence of breast cancer (HR, 0.71; 95% CI, 0.61-0.82; I2 = 60%; P = 0.003), overall mortality (HR, 0.81; 95% CI, 0.70-0.92; I2 = 80.7%; P < 0.001), and breast cancer-specific mortality (HR, 0.76; 95% CI, 0.67-0.86; I2 = 74.5%; P < 0.001). Conclusions: The findings of this study indicate that statin usage, both before and after breast cancer diagnosis, may be associated with reduced risks of overall and breast cancer-specific mortality, as well as lower recurrence rates.

10.
JCI Insight ; 7(13)2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35801588

RESUMEN

BACKGROUNDProlonged symptoms after SARS-CoV-2 infection are well documented. However, which factors influence development of long-term symptoms, how symptoms vary across ethnic groups, and whether long-term symptoms correlate with biomarkers are points that remain elusive.METHODSAdult SARS-CoV-2 reverse transcription PCR-positive (RT-PCR-positive) patients were recruited at Stanford from March 2020 to February 2021. Study participants were seen for in-person visits at diagnosis and every 1-3 months for up to 1 year after diagnosis; they completed symptom surveys and underwent blood draws and nasal swab collections at each visit.RESULTSOur cohort (n = 617) ranged from asymptomatic to critical COVID-19 infections. In total, 40% of participants reported at least 1 symptom associated with COVID-19 six months after diagnosis. Median time from diagnosis to first resolution of all symptoms was 44 days; median time from diagnosis to sustained symptom resolution with no recurring symptoms for 1 month or longer was 214 days. Anti-nucleocapsid IgG level in the first week after positive RT-PCR test and history of lung disease were associated with time to sustained symptom resolution. COVID-19 disease severity, ethnicity, age, sex, and remdesivir use did not affect time to sustained symptom resolution.CONCLUSIONWe found that all disease severities had a similar risk of developing post-COVID-19 syndrome in an ethnically diverse population. Comorbid lung disease and lower levels of initial IgG response to SARS-CoV-2 nucleocapsid antigen were associated with longer symptom duration.TRIAL REGISTRATIONClinicalTrials.gov, NCT04373148.FUNDINGNIH UL1TR003142 CTSA grant, NIH U54CA260517 grant, NIEHS R21 ES03304901, Sean N Parker Center for Allergy and Asthma Research at Stanford University, Chan Zuckerberg Biohub, Chan Zuckerberg Initiative, Sunshine Foundation, Crown Foundation, and Parker Foundation.


Asunto(s)
COVID-19 , COVID-19/complicaciones , Humanos , Inmunoglobulina G , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
11.
Plant Direct ; 6(5): e403, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35662851

RESUMEN

In Arabidopsis, phytochrome (phy) A, phyB, and cryptochrome 1 (cry1) are representative far-red, red, and blue light photoreceptors, respectively. Members of the SUPPRESSOR OF PHYA-105 (SPA) protein family (SPA1-SPA4) form E3 ubiquitin ligase complexes with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), which mediates the degradation of photomorphogenesis-promoting factors to desensitize light signaling. SPA2 has been reported to promote seedling etiolation in the dark. However, the unique roles of SPA2 and its three functional domains in suppressing photomorphogenesis under different light conditions are largely unknown. Here, we demonstrate that overexpression of the full-length or the central coiled-coil and C-terminal WD-repeat domains of SPA2 cause hyper-etiolation phenotypes under several light conditions. The SPA2 central coiled-coil and C-terminal WD-repeat domains are necessary and sufficient for repressing seedling de-etiolation, cotyledon unfolding, and promoting hypocotyl negative gravitropism under several light conditions. Furthermore, phyA, phyB, cry1, and COP1 repress protein accumulation or nuclear translocation of SPA2 through direct interactions with its kinase-like and coiled-coil domains located in the N-terminus in response to far-red, red, and blue light treatments, respectively. Taken together, our results demonstrate that SPA2 functions under multiple light conditions; moreover, light-activated photoreceptors rapidly suppress SPA2 activity via direct interactions in response to different light treatments.

12.
Sci Total Environ ; 838(Pt 4): 156609, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35690217

RESUMEN

An accurate and inexpensive preliminary risk assessment of industrial enterprise sites at a regional scale is critical for environmental management. In this study, we propose a novel framework for the preliminary risk assessment of industrial enterprise sites in the Yangtze River Delta, which is one of the fastest economic development and most prominent contaminated regions in China. Based on source-pathway-receptors, this framework integrated text and spatial analyses and machine learning, and its feasibility was validated with 8848 positive and negative samples with a calibration and validation set ratio of 8:2. The results indicated that the random forest performed well for risk assessment; and its accuracy, precision, recall, and F1 scores in the calibration set were all 1.0, and the four indicators for the validation set ranged from 0.97 to 0.98, which was better than that for the other models (e.g., logistic regression, support vector machine, and convolutional neural network). The preliminary risk ranking of industrial enterprise sites by the random forest showed that high risks (probabilities) were mainly distributed in Shanghai, southern Jiangsu, and northeastern Zhejiang from 2000 to 2015. The relative importance of the site industrial, production, and geographical features in the random forest was 69%, 22%, and 9%, respectively. Our study highlights that we could quickly and effectively establish a priority (or ranking) list of industrial enterprise sites that require further investigations, using the proposed framework, and identify potentially contaminated sites.


Asunto(s)
Macrodatos , Ríos , China , Industrias , Medición de Riesgo/métodos
13.
Water Sci Technol ; 85(1): 244-256, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35050880

RESUMEN

As a thermally induced membrane separation process, membrane distillation (MD) has drawn more and more attention to the advantages of treating hypersaline wastewaters, especially the concentrate from the reverse osmosis (RO) process. One of the major obstacles in widespread MD application is the membrane fouling. We investigated the feasibility of direct contact membrane distillation (DCMD) for landfill leachate reverse osmosis concentrate (LFLRO) brine treatment and systematically assessed the efficiency of chemical cleaning for DCMD after processing LFLRO brine. The results showed that 80% water recovery rate was achieved when processing the LFLRO brine by DCMD, but membrane fouling occurred during the DCMD process, and manifested as the decreasing of permeate flux and the increasing of permeate conductivity. Analysis revealed that the serious flux reduction was primarily caused by the fouling layer, which consisted of organic matter and inorganic salts. Five cleaning methods were investigated for membrane cleaning, including hydrogen chloride (HCl)-sodium hydroxide (NaOH), ethylene diamine tetraacetic acid (EDTA)-NaOH, citric acid, sodium hypochlorite (NaClO) and sodium dodecyl sulphate (SDS) cleaning. Among the chemical cleaning methods investigated, the 3 wt.% SDS cleaning showed the best efficiency at recovering the performance of fouled membranes.


Asunto(s)
Contaminantes Químicos del Agua , Destilación , Filtración , Membranas Artificiales , Ósmosis , Contaminantes Químicos del Agua/análisis
15.
J Ultrasound Med ; 41(8): 1861-1872, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34713919

RESUMEN

To compare the efficacy of therapeutic ultrasound in pain relief and functional recovery in knee osteoarthritis. A comprehensive search of five databases including EMBASE, PubMed, CBM, the Cochrane Library, and Google scholar was conducted to identify relevant studies published between January 1, 2005 and December 31, 2020. Eligible randomized trials were screened for inclusion in this study. Data about the mean change of visual analogue scale (VAS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and range of motion (ROM) were collected. Fourteen randomized trials covering 1080 patients with treatment durations of 2 to 24 weeks were included. Both pulsed (SMD [CI] = 1.11 [0.86, 1.36], P for heterogeneity < .00001, I2  = 18%) and continuous ultrasound (SMD [CI] = 1.18 [0.78, 1.57], P for heterogeneity < .00001, I2  = 72%) therapy had obvious pain relief effects, and high-intensity (>1.5 W/cm2 ) ultrasound seemed more effective (SMD [CI] = 1.34 [0.94, 1.73], P for heterogeneity < .00001, I2  = 35%). In addition, therapeutic ultrasound was also effective in increasing joint function by WOMAC (SMD [CI] = 8.18 [5.88, 10.48], P for heterogeneity < .00001, I2  = 59%). There was a certain degree of heterogeneity due to the differences between the subjects in the study and the ultrasound parameter settings. Our analysis confirmed that both pulsed and continuous ultrasound are effective and safe for pain relief and functional recovery of knee osteoarthritis, especially in high intensity (> 1.5 W/cm2 ). However, more high-quality randomized controlled trials will be necessary.


Asunto(s)
Osteoartritis de la Rodilla , Terapia por Ultrasonido , Analgésicos , Humanos , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/terapia , Dolor/tratamiento farmacológico , Dimensión del Dolor , Resultado del Tratamiento
16.
Aging (Albany NY) ; 13(17): 21547-21570, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34495872

RESUMEN

The senescence of retinal pigment epithelial (RPE) cells is associated with age-related macular degeneration (AMD), a leading cause of blindness in the world. HSP90 is a predominant chaperone that regulates cellular homeostasis under divergent physio-pathological conditions including senescence. However, the role of HSP90 in senescent RPE cells still remains unclear. Here, we reported that HSP90 acts as a senomorphic target of senescent RPE cells in vitro. Using H2O2-induced senescent ARPE-19 cells and replicative senescent primary RPE cells from rhesus monkey, we found that HSP90 upregulates the expression of IKKα, and HIF1α in senescent ARPE-19 cells and subsequently controls the induction of distinct senescence-associated inflammatory factors. Senescent ARPE-19 cells are more resistant to the cytotoxic HSP90 inhibitor IPI504 (IC50 = 36.78 µM) when compared to normal ARPE-19 cells (IC50 = 6.16 µM). Administration of IPI504 at 0.5-5 µM can significantly inhibit the induction of IL-1ß, IL-6, IL-8, MCP-1 and VEGFA in senescent ARPE-19 and the senescence-mediated migration of retinal capillary endothelial cells in vitro. In addition, we found that inhibition of HSP90 by IPI504 reduces SA-ß-Gal's protein expression and enzyme activity in a dose-dependent manner. HSP90 interacts with and regulates SA-ß-Gal protein stabilization in senescent ARPE-19 cells. Taken together, these results suggest that HSP90 regulates the SASP and SA-ß-Gal activity in senescent RPE cells through associating with distinctive mechanism including NF-κB, HIF1α and lysosomal SA-ß-Gal. HSP90 inhibitors (e.g. IPI504) could be a promising senomorphic drug candidate for AMD intervention.


Asunto(s)
Benzoquinonas/administración & dosificación , Senescencia Celular , Proteínas HSP90 de Choque Térmico/metabolismo , Lactamas Macrocíclicas/administración & dosificación , Epitelio Pigmentado de la Retina/metabolismo , Animales , Línea Celular , Células Cultivadas , Citocininas/metabolismo , Células Epiteliales/metabolismo , Humanos , Peróxido de Hidrógeno , Macaca mulatta , Degeneración Macular/etiología , Degeneración Macular/patología , Retina/patología , Epitelio Pigmentado de la Retina/patología , Senoterapéuticos
17.
Exp Ther Med ; 22(1): 692, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33986857

RESUMEN

Osteoporosis (OP) results from an imbalance between bone formation, which is regulated by osteoblasts, and bone resorption, which is mediated by osteoclasts. MicroRNA-22-3p (miR-22-3p) expression is decreased during the process of osteoclast differentiation and p38α mitogen-activated protein kinase (MAPK)14 promotes the proliferation and differentiation of osteoclast progenitors. However, whether miR-22-3p could target MAPK14 to regulate the progression of OP remains unknown, which was the aim of the present study. CD14+ PBMCs were used for the establishment of osteoclastic differentiation in vitro. In the present study, reverse transcription quantitative PCR was used to determine the mRNA expression of MAPK14, tartrate resistant acid phosphatase (TRAP), nuclear factor of activated T-cells (NFATC1) and cathepsin K (CTSK). Western blotting was applied to determine the protein expression of MAPK14, TRAP, NFATC1, CTSK, p-p65 and p65. Dual luciferase reporter assay was applied to confirm the relation between miR-22-3p and MAPK14. Cell Counting Kit-8 assay and flow cytometry assays were used to determine the cell proliferation and cell apoptosis, respectively. The results demonstrated that miR-22-3p expression was lower while MAPK14 expression was higher in the serum from patients with OP compared with healthy volunteers. Furthermore, miR-22-3p expression was negatively correlated with MAPK14 expression in patients with OP. In addition, miR-22-3p expression was decreased and MAPK14 expression was increased during the progression of CD14+peripheral blood mononuclear cells (PBMCs) osteoclastic differentiation in a time-dependent manner. Furthermore, miR-22-3p inhibited the proliferation and differentiation and promoted the apoptosis of CD14+PBMCs by targeting MAPK14. In summary, the findings from the present study suggested that miR-22-3p may serve a potential therapeutic role in patients with OP.

18.
PLoS One ; 16(4): e0249757, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33831102

RESUMEN

Late embryogenesis abundant (LEA) proteins are members of a large and highly diverse family that play critical roles in protecting cells from abiotic stresses and maintaining plant growth and development. However, the identification and biological function of genes of Secale cereale LEA (ScLEA) have been rarely reported. In this study, we identified 112 ScLEA genes, which can be divided into eight groups and are evenly distributed on all rye chromosomes. Structure analysis revealed that members of the same group tend to be highly conserved. We identified 12 pairs of tandem duplication genes and 19 pairs of segmental duplication genes, which may be an expansion way of LEA gene family. Expression profiling analysis revealed obvious temporal and spatial specificity of ScLEA gene expression, with the highest expression levels observed in grains. According to the qRT-PCR analysis, selected ScLEA genes were regulated by various abiotic stresses, especially PEG treatment, decreased temperature, and blue light. Taken together, our results provide a reference for further functional analysis and potential utilization of the ScLEA genes in improving stress tolerance of crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Secale/genética , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Perfilación de la Expresión Génica/métodos , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo/métodos , Estrés Fisiológico/genética
19.
Plants (Basel) ; 9(5)2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32455854

RESUMEN

Plastid-nucleus retrograde signaling (PNRS) play essential roles in regulating nuclear gene expression during plant growth and development. Excessive reactive oxygen species can trigger PNRS. We previously reported that in apple (Malus domestica Borkh.) seedlings, the expression of microRNA156 (miR156) was significantly low in the adult phase, which was accompanied by high levels of hydrogen peroxide (H2O2) accumulation in chloroplasts. However, it was unclear whether adult-phase-specific chloroplast H2O2 may induce PNRS and affect miR156 expression, or miR156 triggers adult phase PNRS during the ontogenesis. In this paper, we examined the relationship between miR156 levels and six PNRS components in juvenile and adult phase leaves from 'Zisai Pearl'×'Red Fuji' hybrids. We found that PNRS generated by singlet oxygen (1O2), the photosynthetic redox state, methylerythritol cyclodiphosphate (MEcPP), SAL1-3-phosphoadenosine 5-phosphate (PAP) and WHIRLY1 were not involved. The accumulation of Mg-protoporphyrin IX (Mg-Proto IX), the expression of the synthetic genes MdGUN5 and MdGUN6, and Mg-Proto IX PNRS related nuclear genes increased with ontogenesis. These changes were negatively correlated with miR156 expression. Manipulating Mg-Proto IX synthesis with 5-aminolevulinic acid (ALA) or gabaculine did not affect miR156 expression in vitro shoots. In contrast, modulating miR156 expression via MdGGT1 or MdMIR156a6 transgenesis led to changes in Mg-Proto IX contents and the corresponding gene expressions. It was concluded that the Mg-Proto IX PNRS was regulated downstream of miR156 regardless of adult-phase-specific plastid H2O2 accumulation. The findings may facilitate the understanding of the mechanism of ontogenesis in higher plants.

20.
J Hazard Mater ; 393: 122424, 2020 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-32143165

RESUMEN

From the perspective of the mechanism of soil pollution, it is difficult to explain the process of predicting the spatial distributions of soil heavy metal pollution using traditional geostatistical methods at a regional scale. Furthermore, few methods are available to proactively identify potential risk areas for preventing soil contamination. In this study, we selected 13 environmental factors related to the accumulation of soil heavy metals based on the source-sink theory. Then, the fuzzy k-means method in combination with the random forest (RF) method was used to classify potential risk areas. The concentrations and spatial distributions of the heavy metals were well predicted by RF, and the average values of the root mean square error of the prediction and R2 were 4.84 mg kg-1 and 0.57, respectively. The results indicated that the soil pH, fine particulate matter, and proximity to polluting enterprises significantly influenced the heavy metal pollution in soils, and the environmental variables varied significantly across the identified subregions. This study provides a theoretical basis for the sustainable management and control of soil pollution at the regional scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...