Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(11): e0294504, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37992060

RESUMEN

Wind power systems are a promising form of energy supply. At present, most of the studies focuses on the performance of individual components such as wind rotors or generators, and the overall output effect of wind power system is determined by the characteristics of wind rotor and generator and their combined characteristics. However, the evaluation of the overall output characteristics of the system is rarely considered. In order to investigate the overall output of the system quickly, a performance matching method of wind rotor and generator based on energy transfer is proposed in this paper. Based on the series operating characteristics of the wind power system model, the energy transformation process of the wind rotor, generator and the whole system are unified described by energy transfer. On the premise that the performance of wind rotor and generator is known, the transfer function model of each component is established, and on this basis, the transfer function model of the overall system is obtained. Then, the overall output effect of the system is analyzed and evaluated by this system transfer function model. The performance of the model is analyzed and compared by using a vertical axis wind power system coupling test bench and MATLAB/Simulink software. The results show that the error between the system output based on the theoretical model and the wind tunnel test is less than 6.5%, and the trend of the simulation and the test curve of the system output is consistent. Therefore, this method can be used to quickly predict the overall output performance of the wind turbine and generator on the premise that the performance of each component is known, without the need to connect each component to a wind power system for testing.


Asunto(s)
Suministros de Energía Eléctrica , Modelos Teóricos , Simulación por Computador , Programas Informáticos , Transferencia de Energía
2.
ACS Appl Mater Interfaces ; 12(3): 3510-3521, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31880910

RESUMEN

Anion-exchange membranes (AEM) with high ion content usually suffer from excessive water absorption and dilution effects that impair conductivity and mechanical properties. We herein report a novel ether containing a cross-linking strategy without adopting high ion-exchange capacity (IEC). The ether-containing cross-links and the quaternized structure are created simultaneously by introducing an ether-containing flexible hydrophilic spacer between two 1,4-diazabicyclo[2,2,2,2]octane or DABCO molecules; the resultant bi-DABCO structure was further employed to react with chloromethylated polysulfone. The long spacer with the ether moiety may benefit the hydroxide ion transport, and the cross-links will control the swelling and water absorption of the AEM. The two ether groups in the long spacer of the cross-links will also shield the DABCO cation from OH- attack due to an electron-donating effect. The prepared membranes exhibited an improved conductivity of 31 mS/cm (at 25 °C) at a comparatively low IEC (1.08 mmol/g) with a rational water absorption and low swelling ratio (95.0 and 27.1%, respectively); they also displayed an enhanced alkaline stability in 1 M NaOH aqueous solution at 80 °C for 150 h. The density functional theory study and physical characterization after the alkaline treatment further confirm the better chemical stability of the cross-linked membrane over its counterpart. Our work presents an effective strategy to balance AEM conductivity and robustness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...