Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202318038, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38881526

RESUMEN

A thin liquid film spread over the inner surface of a rapidly rotating vial creates an aerodynamic cushion on which one or multiple droplets of various liquids can levitate stably for days or even weeks. These levitating droplets can serve as wall-less ("airware") chemical reactors that can be merged without touching - by remote impulses - to initiate reactions or sequences of reactions at scales down to hundreds of nanomoles. Moreover, under external electric fields, the droplets can act as the world's smallest chemical printers, shedding regular trains of pL or even fL microdrops. In one modality, the levitating droplets operate as completely wirelesss aliquoting/titrating systems delivering pg quantities of reagents into the liquid in the rotating vial; in another modality, they print microdroplet arrays onto target surfaces. The "airware", levitated reactors are inexpensive to set up, remarkably stable to external disturbances and, for printing applications, require operating voltages much lower than in electrospray, electrowetting, or ink jet systems.

2.
Hematology ; 27(1): 263-273, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35192776

RESUMEN

BACKGROUND: The reactivation of fetal γ-globin expression is an effective strategy for ameliorating the clinical symptoms of ß-hemoglobinopathies. However, the mechanism of globin switching, especially the roles of long non-coding RNAs (lncRNAs) in this process, remains elusive. METHODS: We compared the in vivo transcriptome profiles of nucleated red blood cells (NRBCs) isolated from the umbilical cord blood of preterm and full-term newborns. We collected 75 umbilical cord blood samples and performed qPCR of the candidate genes. RESULTS: In this study, we identified 7,166 differentially expressed protein-coding genes, 3,243 differentially expressed lncRNAs, and 79 differentially expressed microRNAs. Our data show that the Fanconi anemia pathway and the H19/let-7/LIN28B axis may be involved in γ- to ß-globin gene switching. Moreover, we constructed the hub gene network of the differentially expressed transcription factors. Based on qPCR, we found that BCL11A was differentially expressed based on biological sex. We also confirmed that H19 is differentially expressed and established the H19-related network to reveal the potential regulatory mechanisms. CONCLUSION: We present the profiles of the in vivo transcriptome differences of NRBCs between preterm and full-term neonates for the first time, and provide novel research targets for ß-hemoglobinopathies.


Asunto(s)
Eritrocitos/metabolismo , Sangre Fetal/metabolismo , Transcriptoma/inmunología , Femenino , Sangre Fetal/citología , Humanos , Recién Nacido , Recien Nacido Prematuro , Embarazo
3.
Front Endocrinol (Lausanne) ; 12: 747646, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745012

RESUMEN

Obesity, especially central obesity, is a strong risk factor for developing type 2 diabetes (T2D). However, the mechanism underlying the progression from central obesity to T2D remains unknown. Therefore, we analyzed the gut microbial profiles of central obese individuals with or without T2D from a Chinese population. Here we reported both the microbial compositional and gene functional alterations during the progression from central obesity to T2D. Several opportunistic pathogens were enriched in obese T2D patients. We also characterized thousands of genes involved in sugar and amino acid metabolism whose abundance were significantly depleted in obese T2D group. Moreover, the abundance of those genes was negatively associated with plasma glycemia level and percentage of individuals with impaired plasma glucose status. Therefore, our study indicates that the abundance of those depleted genes can be used as a potential biomarker to identify central obese individuals with high risks of developing T2D.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Diabetes Mellitus Tipo 2/etiología , Microbioma Gastrointestinal/genética , Obesidad Abdominal/microbiología , Adulto , Biomarcadores/metabolismo , Estudios de Casos y Controles , China , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiología , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Humanos , Masculino , Metagenoma/fisiología , Obesidad Abdominal/genética , Obesidad Abdominal/metabolismo , Obesidad Abdominal/patología , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Factores de Riesgo , Transcriptoma
4.
Micromachines (Basel) ; 11(12)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348930

RESUMEN

Microfluidic technologies have enabled generation of exquisite multiple emulsion droplets, which have been used in many fields, including single-cell assays, micro-sized chemical reactions, and material syntheses. Electrical controlling is an important technique for droplet manipulation in microfluidic systems, but the dielectrophoretic behaviors of multiple emulsion droplets in electrical fields are rarely studied. Here, we report on the dielectrophoresis response of double emulsion droplets in AC electric fields in microfluidic channel. A core-shell model is utilized for analyzing the polarization of droplet interfaces and the overall dielectrophoresis (DEP) force. The water-in-oil-in-water droplets, generated by glass capillary devices, experience negative DEP at low field frequency. At high frequency, however, the polarity of DEP is tunable by adjusting droplet shell thickness or core conductivity. Then, the behavior of droplets with two inner cores is investigated, where the droplets undergo rotation before being repelled or attracted by the strong field area. This work should benefit a wide range of applications that require manipulation of double emulsion droplets by electric fields.

5.
Mol Psychiatry ; 25(4): 831-843, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30635639

RESUMEN

Genome-wide association studies (GWAS) have identified many genomic loci associated with risk for schizophrenia, but unambiguous identification of the relationship between disease-associated variants and specific genes, and in particular their effect on risk conferring transcripts, has proven difficult. To better understand the specific molecular mechanism(s) at the schizophrenia locus in 11q25, we undertook cis expression quantitative trait loci (cis-eQTL) mapping for this 2 megabase genomic region using postmortem human brain samples. To comprehensively assess the effects of genetic risk upon local expression, we evaluated multiple transcript features: genes, exons, and exon-exon junctions in multiple brain regions-dorsolateral prefrontal cortex (DLPFC), hippocampus, and caudate. Genetic risk variants strongly associated with expression of SNX19 transcript features that tag multiple rare classes of SNX19 transcripts, whereas they only weakly affected expression of an exon-exon junction that tags the majority of abundant transcripts. The most prominent class of SNX19 risk-associated transcripts is predicted to be overexpressed, defined by an exon-exon splice junction between exons 8 and 10 (junc8.10) and that is predicted to encode proteins that lack the characteristic nexin C terminal domain. Risk alleles were also associated with either increased or decreased expression of multiple additional classes of transcripts. With RACE, molecular cloning, and long read sequencing, we found a number of novel SNX19 transcripts that further define the set of potential etiological transcripts. We explored epigenetic regulation of SNX19 expression and found that DNA methylation at CpG sites near the primary transcription start site and within exon 2 partially mediate the effects of risk variants on risk-associated expression. ATAC sequencing revealed that some of the most strongly risk-associated SNPs are located within a region of open chromatin, suggesting a nearby regulatory element is involved. These findings indicate a potentially complex molecular etiology, in which risk alleles for schizophrenia generate epigenetic alterations and dysregulation of multiple classes of SNX19 transcripts.


Asunto(s)
Esquizofrenia/genética , Nexinas de Clasificación/genética , Adulto , Alelos , Autopsia , Encéfalo/metabolismo , Cromatina/metabolismo , Mapeo Cromosómico/métodos , Metilación de ADN , Exones/genética , Femenino , Expresión Génica/genética , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Factores de Riesgo , Nexinas de Clasificación/metabolismo
6.
Mol Psychiatry ; 25(1): 206-229, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31570775

RESUMEN

Increased expression of the 3.1 isoform of the KCNH2 potassium channel has been associated with cognitive dysfunction and with schizophrenia, yet little is known about the underlying pathophysiological mechanisms. Here, by using in vivo wireless local field potential recordings during working memory processing, in vitro brain slice whole-cell patching recordings and in vivo stereotaxic hippocampal injection of AAV-encoded expression, we identified specific and delayed disruption of hippocampal-mPFC synaptic transmission and functional connectivity associated with reductions of SERPING1, CFH, and CD74 in the KCNH2-3.1 overexpression transgenic mice. The differentially expressed genes in mice are enriched in neurons and microglia, and reduced expression of these genes dysregulates the complement cascade, which has been previously linked to synaptic plasticity. We find that knockdown of these genes in primary neuronal-microglial cocultures from KCNH2-3.1 mice impairs synapse formation, and replenishing reduced CFH gene expression rescues KCNH2-3.1-induced impaired synaptogenesis. Translating to humans, we find analogous dysfunctional interactions between hippocampus and prefrontal cortex in coupling of the fMRI blood oxygen level-dependent (BOLD) signal during working memory in healthy subjects carrying alleles associated with increased KCNH2-3.1 expression in brain. Our data uncover a previously unrecognized role of the truncated KCNH2-3.1 potassium channel in mediating complement activation, which may explain its association with altered hippocampal-prefrontal connectivity and synaptic function. These results provide a potential molecular link between increased KCNH2-3.1 expression, synapse alterations, and hippocampal-prefrontal circuit abnormalities implicated in schizophrenia.


Asunto(s)
Activación de Complemento/fisiología , Canal de Potasio ERG1/metabolismo , Memoria a Corto Plazo/fisiología , Animales , Encéfalo/metabolismo , Disfunción Cognitiva/genética , Activación de Complemento/inmunología , Canal de Potasio ERG1/genética , Femenino , Hipocampo/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transmisión Sináptica/fisiología , Lóbulo Temporal/metabolismo
7.
Genome Biol ; 20(1): 196, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31554518

RESUMEN

BACKGROUND: DNA methylation (DNAm) is a critical regulator of both development and cellular identity and shows unique patterns in neurons. To better characterize maturational changes in DNAm patterns in these cells, we profile the DNAm landscape at single-base resolution across the first two decades of human neocortical development in NeuN+ neurons using whole-genome bisulfite sequencing and compare them to non-neurons (primarily glia) and prenatal homogenate cortex. RESULTS: We show that DNAm changes more dramatically during the first 5 years of postnatal life than during the entire remaining period. We further refine global patterns of increasingly divergent neuronal CpG and CpH methylation (mCpG and mCpH) into six developmental trajectories and find that in contrast to genome-wide patterns, neighboring mCpG and mCpH levels within these regions are highly correlated. We integrate paired RNA-seq data and identify putative regulation of hundreds of transcripts and their splicing events exclusively by mCpH levels, independently from mCpG levels, across this period. We finally explore the relationship between DNAm patterns and development of brain-related phenotypes and find enriched heritability for many phenotypes within identified DNAm features. CONCLUSIONS: By profiling DNAm changes in NeuN-sorted neurons over the span of human cortical development, we identify novel, dynamic regions of DNAm that would be masked in homogenate DNAm data; expand on the relationship between CpG methylation, CpH methylation, and gene expression; and find enrichment particularly for neuropsychiatric diseases in genomic regions with cell type-specific, developmentally dynamic DNAm patterns.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Metilación de ADN , Neuronas/metabolismo , Adolescente , Encéfalo/embriología , Encéfalo/metabolismo , Encéfalo/fisiología , Niño , Preescolar , Islas de CpG , Expresión Génica , Genómica , Humanos , Lactante , Recién Nacido , Plasticidad Neuronal , Isoformas de ARN/química , Isoformas de ARN/metabolismo , Empalme del ARN , Adulto Joven
8.
ACS Appl Mater Interfaces ; 10(46): 40228-40237, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30362341

RESUMEN

Microfiber modules with controllable lengths emerged as novel biomimetic platforms and are significant for many tissue engineering applications. However, accurately controlling the length of microfibers on the scale of millimeter or even micrometer still remains challenging. Here, a novel and scalable strategy to generate microfiber modules with precisely tunable lengths ranging from 100 to 3500 µm via an alternating current (AC) electric field is presented. To control the microfiber length, double-emulsion droplets containing a chelating agent (sodium citrate) as a spacing node are first uniformly embedded in the microfibers in a controllable spatial arrangement. This process is precisely tuned by adjusting the flow rates, thus, tailoring the resulting multicompartmental microfiber structure. Next, an AC voltage signal is used to trigger the electric field-induced cutting process, where the time-averaged electrical force acting on the induced bipolar charge from the Maxwell-Wagner structural polarization mechanism breaks the stress balance at the interfaces, rupturing the double-emulsion droplets, and resulting in the burst release of the encapsulated chelating agents into the hydrogel cavity. The outer hydrogel shell is quickly dissolved by a chemical reaction, cutting the long fiber into a series of microfiber units of given length. Furthermore, adding magnetic nanoparticles endows magnetic functionality with these microfiber modules, which are allowed to serve as micromotors and building blocks. This electro-induced cutting method provides a facile strategy for the fabrication of microfibers with desired lengths, showing considerable promise for various chemical and biological applications.

9.
Toxicol Appl Pharmacol ; 357: 70-79, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30130555

RESUMEN

Both epidemiological investigations and animal studies have linked arsenic-contaminated water to cancers, including skin, liver and lung cancers. Besides genotoxicity, arsenic exposure-related pathogenesis of disease is widely considered through epigenetic mechanisms; however, the underlying mechanism remains to be determined. Herein we explore the initial epigenetic changes via acute sodium arsenite (As) exposures of mouse embryonic fibroblast (MEF) cells and histone H3K79 methyltransferase Dot1L knockout (Dot1L-/-) MEF cells. Our RNA-seq and Western blot data demonstrated that, in both cell lines, acute As exposure abolished histone acetyltransferase p300 at the RNA level and subsequent protein level. Consequently, p300-specific main target histone H3K27ac, a marker separating active from poised enhancers, decreased dramatically as validated by both Western blot and ChIP-qPCR/seq analyses. Concomitantly, H3K4me1 as another well-known marker for enhancers also showed significant decreases, suggesting an underappreciated crosstalk between H3K4me1 and H3K27ac involved in As exposure. Significantly, As exposure-reduced H3K27ac and H3K4me1 inhibited the expression of genes including EP300 itself and Kruppel Like Factor 4(Klf4) that both are tumor suppressor genes. Collectively, our investigations identified p300 as an internal bridging factor within cells to sense external environmental As exposure to alter chromatin, thereby changing gene transcription for disease pathogenesis.


Asunto(s)
Arsenitos/toxicidad , Fibroblastos/efectos de los fármacos , Histonas/metabolismo , Compuestos de Sodio/toxicidad , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Animales , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Factor 4 Similar a Kruppel , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción p300-CBP/metabolismo
10.
Gene Regul Syst Bio ; 12: 1177625018774798, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29785087

RESUMEN

The purpose of this study was to evaluate the effects of butyrate infusion on rumen epithelial transcriptome. Next-generation sequencing (NGS) and bioinformatics are used to accelerate our understanding of regulation in rumen epithelial transcriptome of cattle in the dry period induced by butyrate infusion at the level of the whole transcriptome. Butyrate, as an essential element of nutrients, is a histone deacetylase (HDAC) inhibitor that can alter histone acetylation and methylation, and plays a prominent role in regulating genomic activities influencing rumen nutrition utilization and function. Ruminal infusion of butyrate was following 0-hour sampling (baseline controls) and continued for 168 hours at a rate of 5.0 L/day of a 2.5 M solution as a continuous infusion. Following the 168-hour infusion, the infusion was stopped, and cows were maintained on the basal lactation ration for an additional 168 hours for sampling. Rumen epithelial samples were serially collected via biopsy through rumen fistulae at 0-, 24-, 72-, and 168-hour (D1, D3, D7) and 168-hour post-infusion (D14). In comparison with pre-infusion at 0 hours, a total of 3513 genes were identified to be impacted in the rumen epithelium by butyrate infusion at least once at different sampling time points at a stringent cutoff of false discovery rate (FDR) < 0.01. The maximal effect of butyrate was observed at day 7. Among these impacted genes, 117 genes were responsive consistently from day 1 to day 14, and another 42 genes were lasting through day 7. Temporal effects induced by butyrate infusion indicate that the transcriptomic alterations are very dynamic. Gene ontology (GO) enrichment analysis revealed that in the early stage of rumen butyrate infusion (on day 1 and day 3 of butyrate infusion), the transcriptomic effects in the rumen epithelium were involved with mitotic cell cycle process, cell cycle process, and regulation of cell cycle. Bioinformatic analysis of cellular functions, canonical pathways, and upstream regulator of impacted genes underlie the potential mechanisms of butyrate-induced gene expression regulation in rumen epithelium. The introduction of transcriptomic and bioinformatic technologies to study nutrigenomics in the farm animal presented a new prospect to study multiple levels of biological information to better apprehend the whole animal response to nutrition, physiological state, and their interactions. The nutrigenomics approach may eventually lead to more precise management of utilization of feed resources in a more effective approach.

11.
Lab Chip ; 18(7): 1121-1129, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29536065

RESUMEN

Controlled release of multiple actives after encapsulation in a microenvironment is significant for various biological and chemical applications such as controlled drug delivery and transplantation of encapsulated cells. However, traditional systems often lack efficient encapsulation and release of multiple actives, especially when incorporated substances must be released at a targeted location. Here, we present a straightforward approach to release multiple actives at a prescribed position in microfluidic systems; one or two actives are encapsulated in water-in-oil-in-water emulsion droplets, followed by controlled release of the actives via an alternating current electric field. An electric field-induced compression due to Maxwell-Wagner interfacial polarization overcomes the disjoining pressure at the thin shell and leads to the thinning and rupture of the oil layer of the droplets, resulting in the release of the encapsulated actives to the suspending medium. This technique is feasible for encapsulation and release of various reagents in terms of ion species and ion concentrations. Moreover, polymer nanoparticles and yeast cells can also be included in the droplets and then be released at targeted locations. This versatile method should be well-suited for targeted delivery of various active ingredients such as functional chemical reagents and biological cells.

12.
Electrophoresis ; 39(4): 597-607, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29115688

RESUMEN

We report herein a novel microfluidic particle concentrator that utilizes constriction microchannels to enhance the flow-focusing performance of induced-charge electroosmosis (ICEO), where viscous hemi-spherical oil droplets are embedded within the mainchannel to form deformable converging-diverging constriction structures. The constriction region between symmetric oil droplets partially coated on the electrode strips can improve the focusing performance by inducing a granular wake flow area at the diverging channel, which makes almost all of the scattered sample particles trapped within a narrow stream on the floating electrode. Another asymmetric droplet pair arranged near the outlets can further direct the trajectory of focused particle stream to one specified outlet port depending on the symmetry breaking in the shape of opposing phase interfaces. By fully exploiting rectification properties of induced-charge electrokinetic phenomena at immiscible water/oil interfaces of tunable geometry, the expected function of continuous and switchable flow-focusing is demonstrated by preconcentrating both inorganic silica particles and biological yeast cells. Physical mechanisms responsible for particle focusing and locus deflection in the droplet-assisted concentrentor are analyzed in detail, and simulation results are in good accordance with experimental observations. Our work provides new routes to construct flexible electrokinetic framework for preprocessing on-chip biological samples before performing subsequent analysis.


Asunto(s)
Electroósmosis/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Diseño de Equipo , Dióxido de Silicio , Levaduras/citología
13.
Small ; 13(46)2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29044912

RESUMEN

Advances in microfluidic emulsification have enabled the generation of exquisite multiple-core droplets, which are promising structures to accommodate microreactions. An essential requirement for conducting reactions is the sequential coalescence of the multiple cores encapsulated within these droplets, therefore, mixing the reagents together in a controlled sequence. Here, a microfluidic approach is reported for the conduction of two-step microreactions by electrically fusing three cores inside double-emulsion droplets. Using a microcapillary glass device, monodisperse water-in-oil-in-water droplets are fabricated with three compartmented reagents encapsulated inside. An AC electric field is then applied through a polydimethylsiloxane chip to trigger the sequential mixing of the reagents, where the precise sequence is guaranteed by the discrepancy of the volume or conductivity of the inner cores. A two-step reaction in each droplet is ensured by two times of core coalescence, which totally takes 20-40 s depending on varying conditions. The optimal parameters of the AC signal for the sequential fusion of the inner droplets are identified. Moreover, the capability of this technique is demonstrated by conducting an enzyme-catalyzed reaction used for glucose detection with the double-emulsion droplets. This technique should benefit a wide range of applications that require multistep reactions in micrometer scale.

14.
Anal Chem ; 89(17): 9583-9592, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28783330

RESUMEN

Continuous dielectrophoretic separation is recognized as a powerful technique for a large number of applications including early stage cancer diagnosis, water quality analysis, and stem-cell-based therapy. Generally, the prefocusing of a particle mixture into a stream is an essential process to ensure all particles are subjected to the same electric field geometry in the separation region. However, accomplishing this focusing process either requires hydrodynamic squeezing, which requires an encumbering peripheral system and a complicated operation to drive and control the fluid motion, or depends on dielectrophoretic forces, which are highly sensitive to the dielectric characterization of particles. An alternative focusing technique, induced charge electro-osmosis (ICEO), has been demonstrated to be effective in focusing an incoming mixture into a particle stream as well as nonselective regarding the particles of interest. Encouraged by these aspects, we propose a hybrid method for microparticle separation based on a delicate combination of ICEO focusing and dielectrophoretic deflection. This method involves two steps: focusing the mixture into a thin particle stream via ICEO vortex flow and separating the particles of differing dielectic properties through dielectrophoresis. To demonstrate the feasibility of the method proposed, we designed and fabricated a microfluidic chip and separated a mixture consisting of yeast cells and silica particles with an efficiency exceeding 96%. This method has good potential for flexible integration into other microfluidic chips in the future.

15.
Proc Natl Acad Sci U S A ; 114(27): 7130-7135, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28634288

RESUMEN

RNA sequencing (RNA-seq) is a powerful approach for measuring gene expression levels in cells and tissues, but it relies on high-quality RNA. We demonstrate here that statistical adjustment using existing quality measures largely fails to remove the effects of RNA degradation when RNA quality associates with the outcome of interest. Using RNA-seq data from molecular degradation experiments of human primary tissues, we introduce a method-quality surrogate variable analysis (qSVA)-as a framework for estimating and removing the confounding effect of RNA quality in differential expression analysis. We show that this approach results in greatly improved replication rates (>3×) across two large independent postmortem human brain studies of schizophrenia and also removes potential RNA quality biases in earlier published work that compared expression levels of different brain regions and other diagnostic groups. Our approach can therefore improve the interpretation of differential expression analysis of transcriptomic data from human tissue.


Asunto(s)
ARN/análisis , Análisis de Secuencia de ARN/métodos , Algoritmos , Animales , Biología Computacional , Replicación del ADN , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genotipo , Sustancia Gris , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transcriptoma
16.
ACS Appl Mater Interfaces ; 9(14): 12282-12289, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28345345

RESUMEN

Microfluidically generated double emulsions are promising templates for microreactions, which protect the reaction from external disturbance and enable in vitro analyses with large-scale samples. Controlled combination of their inner droplets in a continuous manner is an essential requirement toward truly applications. Here, we first generate dual-cored double-emulsion drops with different inner encapsulants using a capillary microfluidic device; next, we transfer the emulsion drops into another electrode-integrated polydimethylsiloxane microfluidic device and utilize external AC electric field to continuously trigger the coalescence of inner cores inside these emulsion drops in continuous flow. Hundreds of thousands of monodisperse microreactions with nanoliter-scale reagents can be conducted using this approach. The performance of core coalescence is investigated as a function of flow rate, applied electrical signal, and core conductivity. The coalescence efficiency can reach up to 95%. We demonstrate the utility of this technology for accommodating microreactions by analyzing an enzyme catalyzed reaction and by fabricating cell-laden hydrogel particles. The presented method can be readily used for the controlled triggering of microreactions with high flexibility for a wide range of applications, especially for continuous chemical or cell assays.


Asunto(s)
Emulsiones/química , Hidrogeles
17.
Adv Biosci Biotechnol ; 8(9): 311-323, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29796335

RESUMEN

Histone modification including H3 lysine 79 methylation (H3K79me) plays a key role during gene transcription and DNA damage repair. DOT1L, the sole methyltransferase for three states of H3K79me, is implicated in leukemia, co-lorectal cancer, and dilated cardiomyopathy. However, understanding of DOT1L and H3K79me in these pathways and disease pathogenesis has been limited due to the difficulty of working with DOT1L protein. For instance, locus-specific or genome-wide binding sites of DOT1L revealed by chromatin immunoprecipitation (ChIP)-based methods are necessary for inferring its functions, but high-quality ChIP-grade antibodies are currently not available. Herein we have developed a knock-in approach to tag endogenous DOT1L with 3 × Flag at its C-terminal domain to follow functional analyses. The knock-in was facilitated by using TALENs to induce a targeted double-strand break at the endogenous DOTIL to stimulate local homologous recombination at that site. The single cell colonies with successful knock-in were isolated and verified by different methods. We also demonstrated that tagged DOT1L maintains its normal function in terms of methylation and that the engineered cells would be very useful for further studies.

18.
Cell Discov ; 3: 17038, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29387450

RESUMEN

Imprinted genes are vulnerable to environmental influences during early embryonic development, thereby contributing to the onset of disease in adulthood. Monoallelic methylation at several germline imprints has been reported as DNMT1-dependent. However, which of these two epigenetic attributes, DNMT1-dependence or allelic methylation, renders imprinted genes susceptible to environmental stressors has not been determined. Herein, we developed a new approach, referred to as NORED, to identify 2468 DNMT1-dependent DNA methylation patterns in the mouse genome. We further developed an algorithm based on a genetic variation-independent approach (referred to as MethylMosaic) to detect 2487 regions with bimodal methylation patterns. Two approaches identified 207 regions, including known imprinted germline allele-specific methylation patterns (ASMs), that were both NORED and MethylMosaic regions. Examination of methylation in four independent mouse embryonic stem cell lines shows that two regions identified by both NORED and MethylMosaic (Hcn2 and Park7) did not display parent-of-origin-dependent allelic methylation. In these four F1 hybrid cell lines, genetic variation in Cast allele at Hcn2 locus introduces a transcription factor binding site for MTF-1 that may predispose Cast allelic hypomethylation in a reciprocal cross with either C57 or 129 strains. In contrast, each allele of Hcn2 ASM in J1 inbred cell line and Park7 ASM in four F1 hybrid cell lines seems to exhibit similar propensity to be either hypo- or hypermethylated, suggesting a 'random, switchable' ASM. Together with published results, our data on ASMs prompted us to propose a hypothesis of regional 'autosomal chromosome inactivation (ACI)' that may control a subset of autosomal genes. Therefore, our results open a new avenue to understand monoallelic methylation and provide a rich resource of candidate genes to examine in environmental and nutritional exposure models.

19.
Biomicrofluidics ; 10(6): 064102, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27917250

RESUMEN

Herein, we first describe a perfusion chip integrated with an AC electrothermal (ACET) micromixer to supply a uniform drug concentration to tumor cells. The in-plane fluid microvortices for mixing were generated by six pairs of reconstructed novel ACET asymmetric electrodes. To enhance the mixing efficiency, the novel ACET electrodes with rotating angles of 0°, 30°, and 60° were investigated. The asymmetric electrodes with a rotating angle of 60° exhibited the highest mixing efficiency by both simulated and experimental results. The length of the mixing area is 7 mm, and the mixing efficiency is 89.12% (approximate complete mixing) at a voltage of 3 V and a frequency of 500 kHz. The applicability of our micromixer with electrodes rotating at 60° was demonstrated by the drug (tamoxifen) test of human breast cancer cells (MCF-7) for five days, which implies that our ACET in-plane microvortices micromixer has great potential for the application of drug induced rapid death of tumor cells and mixing of biomaterials in organs-on-a-chip systems.

20.
Lab Chip ; 16(22): 4466, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27775739

RESUMEN

Correction for 'Electrocoalescence of paired droplets encapsulated in double-emulsion drops' by Yankan Jia et al., Lab Chip, 2016, DOI: .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...