Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(6): 8474-8481, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35299299

RESUMEN

Plasmon induced transparency (PIT), known as the coupling of plasmon modes in metamaterials, has attracted intensive research interests in photonic applications. In this work, a PIT-like transparency is realized via the strong coupling of plasmonic dipole and epsilon-near-zero (ENZ) mode. Two types of metasurfaces, namely the gold nanoantenna and dolmen-like metasurface, are designed with an integrated ENZ material aluminum doped zinc oxide (AZO) film. Simulations with the finite element method (FEM) demonstrate that single and double transparent windows are achieved respectively. The adjustments of the peak position and transmittance of transparent windows via the structure parameters and the AZO film thickness are further investigated. This work provides an alternative coupling scheme of realizing PIT-like transparency with simple metasurface design, and offers great potential for future metamaterial applications.

2.
Appl Opt ; 60(19): 5699-5706, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34263864

RESUMEN

An efficient thermal emitter for selective radiative cooling is realized with vanadium dioxide metamaterials. The novel structure consists of patterned VO2 metamaterials on the multilayer substrate and a composite layer on it. To obtain the enhanced emissivity, the influence of the top composite layer and external thermal stimuli are comprehensively optimized. The emissivity can reach up to 0.952 in the metallic phase of VO2 with a composite layer in the atmospheric window, which is due to strong localization of the electric field in the cavity. The influence on the emissivity with different incident angles and geometric parameters is investigated elaborately. Finally, the cooling power is calculated and achieves a high value of 710W/m2 at 383 K, which is significantly higher than that of previous works. Thus, our proposed tunable emitter with high performance will be beneficial to the dynamic radiative cooling system and may open a potential application in building cooling and intelligent windows.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...