Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Hum Genomics ; 18(1): 51, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778419

RESUMEN

OBJECTIVE: This study aimed to identify candidate loci and genes related to sleep disturbances in depressed individuals and clarify the co-occurrence of sleep disturbances and depression from the genetic perspective. METHODS: The study subjects (including 58,256 self-reported depressed individuals and 6,576 participants with PHQ-9 score ≥ 10, respectively) were collected from the UK Biobank, which were determined based on the Patient Health Questionnaire (PHQ-9) and self-reported depression status, respectively. Sleep related traits included chronotype, insomnia, snoring and daytime dozing. Genome-wide association studies (GWASs) of sleep related traits in depressed individuals were conducted by PLINK 2.0 adjusting age, sex, Townsend deprivation index and 10 principal components as covariates. The CAUSALdb database was used to explore the mental traits associated with the candidate genes identified by the GWAS. RESULTS: GWAS detected 15 loci significantly associated with chronotype in the subjects with self-reported depression, such as rs12736689 at RNASEL (P = 1.00 × 10- 09), rs509476 at RGS16 (P = 1.58 × 10- 09) and rs1006751 at RFX4 (P = 1.54 × 10- 08). 9 candidate loci were identified in the subjects with PHQ-9 ≥ 10, of which 2 loci were associated with insomnia such as rs115379847 at EVC2 (P = 3.50 × 10- 08), and 7 loci were associated with daytime dozing, such as rs140876133 at SMYD3 (P = 3.88 × 10- 08) and rs139156969 at ROBO2 (P = 3.58 × 10- 08). Multiple identified genes, such as RNASEL, RGS16, RFX4 and ROBO2 were reported to be associated with chronotype, depression or cognition in previous studies. CONCLUSION: Our study identified several candidate genes related to sleep disturbances in depressed individuals, which provided new clues for understanding the biological mechanism underlying the co-occurrence of depression and sleep disorders.


Asunto(s)
Depresión , Estudio de Asociación del Genoma Completo , Trastornos del Sueño-Vigilia , Humanos , Masculino , Femenino , Trastornos del Sueño-Vigilia/genética , Persona de Mediana Edad , Depresión/genética , Polimorfismo de Nucleótido Simple/genética , Predisposición Genética a la Enfermedad , Anciano , Adulto
2.
Artículo en Inglés | MEDLINE | ID: mdl-38767715

RESUMEN

Subjective well-being (SWB) is an important measure for mental health status. Previous research has shown that physical activity can affect an individual's well-being, yet the underlying molecular mechanism remains to be clarified. In this study, we aim to evaluate the potential interactions between mitochondrial genes and physical activity (PA) as well as their combined effects on individual well-being. SWB phenotype data in UK Biobank were enrolled for this study including nine aspects such as work/job satisfaction, health satisfaction, family relationship satisfaction, friendships satisfaction, financial situation satisfaction, ever depressed for a whole week, general happiness, general happiness with own health and belief that own life is meaningful. We made analysis for each aspects separately. Firstly, mitochondria-wide association studies (MiWAS) was conducted to assess the association of mitochondrial Single Nucleotide Polymorphisms SNP with each aspect of SWB. Then an interaction analysis of mitochondrial DNA (mtDNA) mutation and PA was performed to evaluate their joint effect on SWB status. Meanwhile, these two analysis were made for female and male group separately as well as the total samples, all under the control of possible confounding factors including gender, age, Townsend Deprivation Index (TDI), education, alcohol consumption, smoking habits, and 10 principal components. MiWAS analysis identified 45 mtSNPs associated with 9 phenotypes of SWB. For example, m.15218A > G on MT-CYB in the health satisfaction phenotype of the total subjects. Gender-specific analyses found 30 mtSNPs in females and 58 in males, involving 13 mtGenes. In mtDNA-PA interaction analysis, we also identified 10 significant mtDNA-PA interaction sets for SWB. For instance, m.13020 T > C (MT-ND5) was associated with the SWB financial situation satisfaction phenotype in all subjects (P = 0.00577). In addition, MiWAS analysis identified 12 mtGene variants associated with SWB, as MT-ND1 and MT-ND2. However, in mtDNA-PA interactions we detected 7 mtDNA affecting psychiatric disorders occurring, as in the friendships satisfaction phenotype (m.3394 T > C on MT-ND1). Our study results suggest an implication of the interaction between mitochondrial function and physical activity in the risk of psychiatric disorder development.

3.
Food Chem Toxicol ; 189: 114724, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38734200

RESUMEN

Notch signaling regulates cartilage formation and homeostasis. Kashin-Beck Disease (KBD), an endemic osteochondropathy, is characterized by severe cartilage degradation. The etiology of KBD is related to the exposure of HT-2 toxin, a mycotoxin and primary metabolite of T-2 toxin. This study aims to explore the role of HT-2 toxin in the Notch signaling regulation and extracellular matrix (ECM) metabolism of hiPSCs-Chondrocytes. Immunohistochemistry and qRT-PCR were employed to investigate the expression of Notch pathway molecules in KBD articular cartilage and primary chondrocytes. hiPSCs-Chondrocytes, derived from hiPSCs, were treated with 100 ng/mL HT-2 toxin and the γ-secretase inhibitor (DAPT) for 48h, respectively. The markers related to the Notch signaling pathway and ECM were assessed using qRT-PCR and Western blot. Notch pathway dysregulation was prominent in KBD cartilage. HT-2 toxin exposure caused cytotoxicity in hiPSCs-Chondrocytes, and activated Notch signaling by increasing the mRNA and protein levels of NOTCH1 and HES1. HT-2 toxin also upregulated ECM catabolic enzymes and downregulated ECM components (COL2A1 and ACAN), indicating ECM degradation. DAPT-mediated Notch signaling inhibition suppressed the mRNA and protein level of ADAMTS5 expression while enhancing ECM component expression in hiPSCs-Chondrocytes. This study suggests that HT-2 toxin may induce ECM degradation in hiPSCs-Chondrocytes through activating Notch signaling.

4.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673933

RESUMEN

The aim of this study was to provide a comprehensive understanding of similarities and differences in mRNAs, lncRNAs, and circRNAs within cartilage for Kashin-Beck disease (KBD) compared to osteoarthritis (OA). We conducted a comparison of the expression profiles of mRNAs, lncRNAs, and circRNAs via whole-transcriptome sequencing in eight KBD and ten OA individuals. To facilitate functional annotation-enriched analysis for differentially expressed (DE) genes, DE lncRNAs, and DE circRNAs, we employed bioinformatic analysis utilizing Gene Ontology (GO) and KEGG. Additionally, using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), we validated the expression levels of four cartilage-related genes in chondrocytes. We identified a total of 43 DE mRNAs, 1451 DE lncRNAs, and 305 DE circRNAs in KBD cartilage tissue compared to OA (q value < 0.05; |log2FC| > 1). We also performed competing endogenous RNA network analysis, which identified a total of 65 lncRNA-mRNA interactions and 4714 miRNA-circRNA interactions. In particular, we observed that circRNA12218 had binding sites for three miRNAs targeting ACAN, while circRNA12487 had binding sites for seven miRNAs targeting COL2A1. Our results add a novel set of genes and non-coding RNAs that could potentially serve as candidate diagnostic biomarkers or therapeutic targets for KBD patients.


Asunto(s)
Enfermedad de Kashin-Beck , Osteoartritis , ARN Circular , ARN Largo no Codificante , ARN Mensajero , Transcriptoma , Humanos , Enfermedad de Kashin-Beck/genética , ARN Largo no Codificante/genética , Masculino , Femenino , Persona de Mediana Edad , ARN Circular/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética , Osteoartritis/genética , Perfilación de la Expresión Génica/métodos , Cartílago Articular/metabolismo , Cartílago Articular/patología , Anciano , Articulación de la Rodilla/patología , Articulación de la Rodilla/metabolismo , MicroARNs/genética , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Biología Computacional/métodos , Condrocitos/metabolismo , Agrecanos/genética , Agrecanos/metabolismo , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/metabolismo , Regulación de la Expresión Génica , Ontología de Genes , Adulto
5.
Food Chem Toxicol ; 188: 114630, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604577

RESUMEN

In this study, we conducted a systematic assessment of the effectsof deoxynivalenol (DON) and T-2 mycotoxins (T-2) on the developmental processes and structural integrity of murine femurs, considering both the isolated and synergistic effects of these toxins. To this end, we divided 72 male mice into nine groups, each subjected to varying dosages of T-2, DON, or their combinations. Over a four-week experimental period, meticulous monitoring was undertaken regarding the mice's body weight, biochemical markers of bone formation and resorption, and the activity of relevant cells. To comprehensively evaluate alterations in bone structure, we employed biomechanical analysis, micro-computed tomography (micro-CT), and transmission electron microscopy.Our findings unveiled a significant revelation: the mice exhibited a dose-dependent decrease in body weight upon exposure to individual mycotoxins, while the combined use of these toxins manifested an atypical antagonistic effect. Furthermore, we observed variations in the levels of calcium, phosphorus, and vitamin D, as well as adjustments in the activities of osteoblasts and osteoclasts, all intricately linked to the dosage and ratio of the toxins. Alterations in biomechanical properties were also noted to correlate with the dosage and combination of toxins. Analyses via micro-CT and transmission electron microscopy further corroborated the substantial impact of toxin dosage and combinations on both cortical and trabecular bone structures.In summation, our research unequivocally demonstrates the dose- and ratio-dependent detrimental effects of DON and T-2 mycotoxins on the growth and structural integrity of murine femurs. These insights accentuate the importance of a profound understanding of the potential risks these toxins pose to bone health, offering pivotal guidance for future toxicological research and public health preventative strategies.


Asunto(s)
Fémur , Toxina T-2 , Tricotecenos , Microtomografía por Rayos X , Animales , Tricotecenos/toxicidad , Masculino , Fémur/efectos de los fármacos , Ratones , Toxina T-2/toxicidad , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Peso Corporal/efectos de los fármacos
6.
Artículo en Inglés | MEDLINE | ID: mdl-38536958

RESUMEN

BACKGROUND: Bone mineral density (BMD) is a major predictor of osteoporotic fractures, and previous studies have reported the effects of mitochondrial dysfunction and lifestyle on BMD, respectively. However, their interaction effects on BMD are still unclear. Therefore, we aimed to investigate the possible interaction of mitochondrial DNA (mtDNA) and common lifestyles contributing to osteoporosis. METHODS: Our analysis included 119,120 white participants (Nfemale=65,949 and Nmale=53,171) from the UK Biobank with heel BMD phenotype data. A generalized linear regression model of PLINK was performed to assess the interaction effects of mtDNA and five life environmental factors on heel BMD, including smoking, drinking, physical activity, dietary diversity score, and vitamin D. In addition, we also performed linear regression analysis for total body BMD. Finally, we assessed the potential causal relationships between mtDNA copy number (mtDNA-CN) and life environmental factors using Mendelian randomization (MR) analysis. RESULTS: Our study identified four mtDNA loci showing suggestive evidence of heel BMD, such as m.16356T>C (MT-DLOOP; P =1.50×10-3) in total samples. Multiple candidate mtDNA×lifetsyle interactions were also detected for heel BMD, such as MT-ND2×physical activity (P = 2.88×10-3) in total samples and MT-ND1×smoking (P = 8.54×10-4) in males. Notably, MT-CYB was a common candidate mtDNA loci for heel BMD to interact with five life environmental factors. Multivariable MR analysis indicated a causal effect of physical activity on heel BMD when mtDNA-CN was considered (P =1.13×10-3). CONCLUSIONS: Our study suggests the candidate interaction between mitochondria and lifestyles on heel BMD, providing novel clues for exploring the pathogenesis of osteoporosis.

7.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38436562

RESUMEN

BACKGROUND: Depression has been linked to an increased risk of cardiovascular and respiratory diseases; however, its impact on cardiac and lung function remains unclear, especially when accounting for potential gene-environment interactions. METHODS: We developed a novel polygenic and gene-environment interaction risk score (PGIRS) integrating the major genetic effect and gene-environment interaction effect of depression-associated loci. The single nucleotide polymorphisms (SNPs) demonstrating major genetic effect or environmental interaction effect were obtained from genome-wide SNP association and SNP-environment interaction analyses of depression. We then calculated the depression PGIRS for non-depressed individuals, using smoking and alcohol consumption as environmental factors. Using linear regression analysis, we assessed the associations of PGIRS and conventional polygenic risk score (PRS) with lung function (N = 42 886) and cardiac function (N = 1791) in the subjects with or without exposing to smoking and alcohol drinking. RESULTS: We detected significant associations of depression PGIRS with cardiac and lung function, contrary to conventional depression PRS. Among smokers, forced vital capacity exhibited a negative association with PGIRS (ß = -0.037, FDR = 1.00 × 10-8), contrasting with no significant association with PRS (ß = -0.002, FDR = 0.943). In drinkers, we observed a positive association between cardiac index with PGIRS (ß = 0.088, FDR = 0.010), whereas no such association was found with PRS (ß = 0.040, FDR = 0.265). Notably, in individuals who both smoked and drank, forced expiratory volume in 1-second demonstrated a negative association with PGIRS (ß = -0.042, FDR = 6.30 × 10-9), but not with PRS (ß = -0.003, FDR = 0.857). CONCLUSIONS: Our findings underscore the profound impact of depression on cardiac and lung function, highlighting the enhanced efficacy of considering gene-environment interactions in PRS-based studies.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/complicaciones , Trastorno Depresivo Mayor/genética , Interacción Gen-Ambiente , Puntuación de Riesgo Genético , Fumar/efectos adversos , Pulmón
8.
Commun Med (Lond) ; 4(1): 40, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454150

RESUMEN

BACKGROUND: The identification of suitable biomarkers is of crucial clinical importance for the early diagnosis of treatment-resistant schizophrenia (TRS). This study aims to comprehensively analyze the association between TRS and blood and urine biomarkers. METHODS: Candidate TRS-related single nucleotide polymorphisms (SNPs) were obtained from a recent genome-wide association study. The UK Biobank cohort, comprising 376,807 subjects with blood and urine biomarker testing data, was used to calculate the polygenic risk score (PRS) for TRS. Pearson correlation analyses were performed to evaluate the correlation between TRS PRS and each of the biomarkers, using calculated TRS PRS as the instrumental variables. Bidirectional two-sample Mendelian randomization (MR) was used to assess potential causal associations between candidate biomarkers with TRS. RESULTS: Here we identify a significant association between TRS PRS and phosphate (r = 0.007, P = 1.96 × 10-4). Sex subgroup analyses identify seven and three candidate biomarkers associated with TRS PRS in male and female participants, respectively. For example, total protein and phosphate for males, creatinine and phosphate for females. Bidirectional two-sample MR analyses indicate that TRS is negatively associated with cholesterol (estimate = -0.363, P = 0.008). Conversely, TRS is positively associated with total protein (estimate = 0.137, P = 0.027), mean corpuscular volume (estimate = 0.032, P = 2.25 × 10-5), and mean corpuscular hemoglobin (estimate = 0.018, P = 0.007). CONCLUSIONS: Our findings provide insights into the roles of blood and urine biomarkers in the early detection and treatment of TRS.


People with schizophrenia experience periods of time during which they misperceive reality. Some people with schizophrenia do not respond well to the usual drugs that are used to relieve their symptoms. This type of schizophrenia is known as treatment-resistant schizophrenia (TRS). We looked at differences in the genes (inherited characteristics), blood and urine of a group of people in the UK with schizophrenia to see if people with TRS have particular characteristics that would enable them to be distinguished from patients with schizophrenia who tend to respond to usual treatment. We found several differences in the blood that could be used to predict which people might get TRS, including some that were specific to men or women. These discoveries are important because they can help doctors identify people who are more likely to develop TRS earlier, enabling them to avoid using treatments that might not work well for them.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38305800

RESUMEN

The establishment of 3'aQTLs comprehensive database provides an opportunity to help explore the functional interpretation from the genome-wide association study (GWAS) data of psychiatric disorders. In this study, we aim to search novel susceptibility genes, pathways, and related chemicals of five psychiatric disorders via GWAS and 3'aQTLs datasets. The GWAS datasets of five psychiatric disorders were collected from the open platform of Psychiatric Genomics Consortium (PGC, https://www.med.unc.edu/pgc/ ) and iPSYCH ( https://ipsych.dk/ ) (Demontis et al. in Nat Genet 51(1):63-75, 2019; Grove et al. in Nat Genet 51:431-444, 2019; Genomic Dissection of Bipolar Disorder and Schizophrenia in Cell 173: 1705-1715.e1716, 2018; Mullins et al. in Nat Genet 53: 817-829; Howard et al. in Nat Neurosci 22: 343-352, 2019). The 3'untranslated region (3'UTR) alternative polyadenylation (APA) quantitative trait loci (3'aQTLs) summary datasets of 12 brain regions were obtained from another public platform ( https://wlcb.oit.uci.edu/3aQTLatlas/ ) (Cui et al. in Nucleic Acids Res 50: D39-D45, 2022). First, we aligned the GWAS-associated SNPs of psychiatric disorders and datasets of 3'aQTLs, and then, the GWAS-associated 3'aQTLs were identified from the overlap. Second, gene ontology (GO) and pathway analysis was applied to investigate the potential biological functions of matching genes based on the methods provided by MAGMA. Finally, chemical-related gene-set analysis (GSA) was also conducted by MAGMA to explore the potential interaction of GWAS-associated 3'aQTLs and multiple chemicals in the mechanism of psychiatric disorders. A number of susceptibility genes with 3'aQTLs were found to be associated with psychiatric disorders and some of them had brain-region specificity. For schizophrenia (SCZ), HLA-A showed associated with psychiatric disorders in all 12 brain regions, such as cerebellar hemisphere (P = 1.58 × 10-36) and cortex (P = 1.58 × 10-36). GO and pathway analysis identified several associated pathways, such as Phenylpropanoid Metabolic Process (GO:0009698, P = 6.24 × 10-7 for SCZ). Chemical-related GSA detected several chemical-related gene sets associated with psychiatric disorders. For example, gene sets of Ferulic Acid (P = 6.24 × 10-7), Morin (P = 4.47 × 10-2) and Vanillic Acid (P = 6.24 × 10-7) were found to be associated with SCZ. By integrating the functional information from 3'aQTLs, we identified several susceptibility genes and associated pathways especially chemical-related gene sets for five psychiatric disorders. Our results provided new insights to understand the etiology and mechanism of psychiatric disorders.

10.
J Hazard Mater ; 466: 133658, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38310839

RESUMEN

Evidence of the associations of air pollution and musculoskeletal diseases is inconsistent. This study aimed to examine the associations between air pollutants and the risk of incident musculoskeletal diseases, such as degenerative joint diseases (n = 38,850) and inflammatory arthropathies (n = 20,108). An air pollution score was constructed to assess the combined effect of PM2.5, PM2.5-10, NO2, and NOX. Cox proportional hazard model was applied to assess the relationships between air pollutants and the incidence of each musculoskeletal disease. The air pollution scores exhibited the modest association with an increased risk of osteoporosis (HR = 1.006, 95% CI: 1.002-1.011). Among the individual air pollutants, PM2.5 and PM2.5-10 exhibited the most significant effect on elevated risk of musculoskeletal diseases, such as PM2.5 on osteoporosis (HR = 1.064, 95% CI: 1.020-1.110), PM2.5-10 on inflammatory arthropathies (HR = 1.059, 95% CI: 1.037-1.081). Females were found to have a higher risk of incident musculoskeletal diseases when exposed to air pollutants. Individuals with extreme BMI or lower socioeconomic status had a higher risk of developing musculoskeletal diseases. Our findings reveal that long-term exposure to ambient air pollutants may contribute to an increased risk of musculoskeletal diseases.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Artropatías , Osteoporosis , Femenino , Humanos , Estudios Prospectivos , Material Particulado/toxicidad , Exposición a Riesgos Ambientales , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Osteoporosis/inducido químicamente , Artropatías/inducido químicamente , Dióxido de Nitrógeno
11.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255951

RESUMEN

T-2 toxin and deoxynivalenol (DON) are two prevalent mycotoxins that cause cartilage damage in Kashin-Beck disease (KBD). Cartilage extracellular matrix (ECM) degradation in chondrocytes is a significant pathological feature of KBD. It has been shown that the Hippo pathway is involved in cartilage ECM degradation. This study aimed to examine the effect of YAP, a major regulator of the Hippo pathway, on the ECM degradation in the hiPS-derived chondrocytes (hiPS-Ch) model of KBD. The hiPS-Ch injury models were established via treatment with T-2 toxin/DON alone or in combination. We found that T-2 toxin and DON inhibited the proliferation of hiPS-Ch in a dose-dependent manner; significantly increased the levels of YAP, SOX9, and MMP13; and decreased the levels of COL2A1 and ACAN (all p values < 0.05). Immunofluorescence revealed that YAP was primarily located in the nuclei of hiPS-Ch, and its expression level increased with toxin concentrations. The inhibition of YAP resulted in the dysregulated expression of chondrogenic markers (all p values < 0.05). These findings suggest that T-2 toxin and DON may inhibit the proliferation of, and induce the ECM degradation, of hiPS-Ch mediated by YAP, providing further insight into the cellular and molecular mechanisms contributing to cartilage damage caused by toxins.


Asunto(s)
Condrocitos , Toxina T-2 , Tricotecenos , Humanos , Toxina T-2/toxicidad , Proteínas Señalizadoras YAP , Factores de Transcripción , Proteínas Adaptadoras Transductoras de Señales
12.
HLA ; 103(1): e15173, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37529978

RESUMEN

Immune dysregulation has been widely observed in patients with psychiatric disorders. This study aims to examine the association between HLA alleles and depression and anxiety. Using data from the UK Biobank, we performed regression analyses to assess the association of 359 HLA alleles with depression and anxiety, as determined by Patient Health Questionnaire (PHQ) score (n = 120,033), self-reported depression (n = 121,685), general anxiety disorder (GAD-7) score (n = 120,590), and self-reported anxiety (n = 108,310). Subsequently, we conducted gene environmental interaction study (GEIS) to evaluate the potential effects of interactions between HLA alleles and environmental factors on the risk of depression and anxiety. Sex stratification was implemented in all analysis. Our study identified two significant HLA alleles associated with self-reported depression, including HLA-C*07:01 (ß = -0.015, p = 5.54 × 10-5 ) and HLA-B*08:01 (ß = -0.015, p = 7.78 × 10-5 ). Additionally, we identified four significant HLA alleles associated with anxiety score, such as HLA-DRB1*07:01 (ß = 0.084, p = 9.28 × 10-5 ) and HLA-B*57:01 (ß = 0.139, p = 1.22 × 10-4 ). GEIS revealed that certain HLA alleles interacted with environmental factors to influence mental health outcomes. For instance, HLA-A*02:07 × cigarette smoking was associated with depression score (ß = 0.976, p = 1.88 × 10-6 ). Moreover, sex stratification analysis revealed significant sex-based differences in the interaction effects of certain HLA alleles with environmental factors. Our findings indicate the considerable impact of HLA alleles on the risks of depression and anxiety, providing valuable insights into the functional relevance of immune dysfunction in these conditions.


Asunto(s)
Trastornos de Ansiedad , Depresión , Humanos , Alelos , Depresión/genética , Trastornos de Ansiedad/genética , Ansiedad/genética , Cadenas HLA-DRB1/genética , Predisposición Genética a la Enfermedad
13.
Artículo en Inglés | MEDLINE | ID: mdl-38154517

RESUMEN

BACKGROUND: Rare variants are believed to play a substantial role in the genetic architecture of mental disorders, particularly in coding regions. However, limited evidence supports the impact of rare variants on anxiety. METHODS: Using whole-exome sequencing data from 200,643 participants in the UK Biobank, we investigated the contribution of rare variants to anxiety. Firstly, we computed genetic risk score (GRS) of anxiety utilizing genotype data and summary data from a genome-wide association study (GWAS) on anxiety disorder. Subsequently, we identified individuals within the lowest 50% GRS, a subgroup more likely to carry pathogenic rare variants. Within this subgroup, we classified individuals with the highest 10% 7-item Generalized Anxiety Disorder scale (GAD-7) score as cases (N = 1869), and those with the lowest 10% GAD-7 score were designated as controls (N = 1869). Finally, we conducted gene-based burden tests and single-variant association analyses to assess the relationship between rare variants and anxiety. RESULTS: Totally, 47,800 variants with MAF ≤0.01 were annotated as non-benign coding variants, consisting of 42,698 nonsynonymous SNVs, 489 nonframeshift substitution, 236 frameshift substitution, 617 stop-gain and 40 stop-loss variants. After variation aggregation, 5066 genes were included in gene-based association analysis. Totally, 11 candidate genes were detected in burden test, such as RNF123 (PBonferroni adjusted = 3.40 × 10-6), MOAP1(PBonferroni adjusted = 4.35 × 10-4), CCDC110 (PBonferroni adjusted = 5.83 × 10-4). Single-variant test detected 9 rare variants, such as rs35726701(RNF123)(PBonferroni adjusted = 3.16 × 10-10) and rs16942615(CAMTA2) (PBonferroni adjusted = 4.04 × 10-4). Notably, RNF123, CCDC110, DNAH2, and CSKMT gene were identified in both tests. CONCLUSIONS: Our study identified novel candidate genes for anxiety in protein-coding regions, revealing the contribution of rare variants to anxiety.


Asunto(s)
Exoma , Estudio de Asociación del Genoma Completo , Humanos , Exoma/genética , Biobanco del Reino Unido , Bancos de Muestras Biológicas , Ansiedad/genética , Trastornos de Ansiedad/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas de Unión al Calcio , Transactivadores/genética
14.
J Glob Health ; 13: 04146, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063329

RESUMEN

Background: Mental disorders are largely socially determined, yet the combined impact of multidimensional social factors on the two most common mental disorders, depression and anxiety, remains unclear. Methods: We constructed a polysocial risk score (PsRS), a multidimensional social risk indicator including components from three domains: socioeconomic status, neighborhood and living environment and psychosocial factors. Supported by the UK Biobank cohort, we randomly divided 110 332 participants into the discovery cohort (60%; n = 66 200) and the replication cohort (40%; n = 44 134). We tested the associations between 13 single social factors with Patient Health Questionnaire (PHQ) score, Generalized Anxiety Disorder Scale (GAD) score and self-reported depression and anxiety. The significant social factors were used to calculate PsRS for each mental disorder by considering weights from the multivariable linear model. Generalized linear models were applied to explore the association between PsRS and depression and anxiety. Genome-wide environmental interaction study (GWEIS) was further performed to test the effect of interactions between PsRS and SNPs on the risk of mental phenotypes. Results: In the discovery cohort, PsRS was positively associated with PHQ score (ß = 0.37; 95% CI = 0.35-0.38), GAD score (ß = 0.27; 95% CI = 0.25-0.28), risk of self-reported depression (OR = 1.29; 95% CI = 1.28-1.31) and anxiety (OR = 1.19; 95% CI = 1.19-1.23). Similar results were observed in the replication cohort. Emotional stress, lack of social support and low household income were significantly associated with the development of depression and anxiety. GWEIS identified multiple candidate loci for PHQ score, such as rs149137169 (ST18) (Pdiscovery = 1.08 × 10-8, Preplication = 3.25 × 10-6) and rs3759812 (MYO9A) (Pdiscovery = 3.87 × 10-9, Preplication = 6.21 × 10-5). Additionally, seven loci were detected for GAD score, such as rs114006170 (TMPRSS11D) (Pdiscovery = 1.14 × 10-9, Preplication = 7.36 × 10-5) and rs77927903 (PIP4K2A) (Pdiscovery = 2.40 × 10-9, Preplication = 0.002). Conclusions: Our findings reveal the positive effects of multidimensional social factors on the risk of depression and anxiety. It is important to address key social disadvantage in mental health promotion and treatment.


Asunto(s)
Depresión , Trastornos Mentales , Humanos , Depresión/epidemiología , Depresión/genética , Ansiedad/psicología , Factores de Riesgo , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol) , Miosinas
15.
Adv Genet (Hoboken) ; 4(4): 2300192, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38099244

RESUMEN

Observational studies have shown that alterations in gut microbiota composition are associated with low back pain. However, it remains unclear whether the association is causal. To reveal the causal association between gut microbiota and low back pain, a two-sample bidirectional Mendelian randomization (MR) analysis is performed. The inverse variance weighted regression (IVW) is performed as the principal MR analysis. MR-Egger and Weighted Median is further conducted as complementary analysis to validate the robustness of the results. Finally, a reverse MR analysis is performed to evaluate the possibility of reverse causation. The inverse variance weighted (IVW) method suggests that Peptostreptococcaceae (odds ratio [OR] 1.056, 95% confidence interval [CI] [1.015-1.098], P IVW = 0.010), and Lactobacillaceae (OR 1.070, 95% CI [1.026-1.115], P IVW = 0.003) are positively associated with back pain. The Ruminococcaceae (OR 0.923, 95% CI [0.849-0.997], P IVW = 0.033), Butyricicoccus (OR 0.920, 95% CI [0.868 - 0.972], P IVW = 0.002), and Lachnospiraceae (OR 0.948, 95% CI [0.903-0.994], P IVW = 0.022) are negatively associated with back pain. In this study, underlying causal relationships are identified among gut microbiota and low back pain. Notably, further research is needed on the biological mechanisms by which gut microbiota influences low back pain.

16.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38003226

RESUMEN

OBJECTIVE: Kashin-Beck disease (KBD) is a kind of endemic and chronic osteochondropathy in China. This study aims to explore the functional relevance and potential mechanism of Wnt-inducible signaling pathway protein 1 (WISP1) in the pathogenesis of KBD. DESIGN: KBD and control cartilage specimens were collected for tissue section observation and primary chondrocyte culture. Firstly, the morphological and histopathological observations were made under a light and electron microscope. Then, the expression levels of WISP1 as well as molecular markers related to the autophagy pathway and extracellular matrix (ECM) synthesis were detected in KBD and control chondrocytes by qRT-PCR, Western blot, and immunohistochemistry. Furthermore, the lentiviral transfection technique was applied to make a WISP1 knockdown cell model based on KBD chondrocytes. In vitro intervention experiments were conducted on the C28/I2 human chondrocyte cell line using human recombinant WISP1 (rWISP1). RESULTS: The results showed that the autolysosome appeared in the KBD chondrocytes. The expression of WISP1 was significantly higher in KBD chondrocytes. Additionally, T-2 toxin, a risk factor for KBD onset, could up-regulate the expression of WISP1 in C28/I2. The autophagy markers ATG4C and LC3II were upregulated after the low-concentration treatment of T-2 toxin and downregulated after the high-concentration treatment. After knocking down WISP1 expression in KBD chondrocytes, MAP1LC3B decreased while ATG4C and COL2A1 increased. Moreover, the rWISP1 protein treatment in C28/I2 chondrocytes could upregulate the expression of ATG4C and LC3II at the beginning and downregulate them then. CONCLUSIONS: Our study suggested that WISP1 might play a role in the pathogenesis of KBD through autophagy.


Asunto(s)
Cartílago Articular , Enfermedad de Kashin-Beck , Toxina T-2 , Humanos , Enfermedad de Kashin-Beck/genética , Enfermedad de Kashin-Beck/metabolismo , Enfermedad de Kashin-Beck/patología , Toxina T-2/metabolismo , Línea Celular , Vía de Señalización Wnt , Autofagia , Condrocitos/metabolismo , Cartílago Articular/metabolismo
17.
Nutrients ; 15(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37836511

RESUMEN

The connection between the gut microbiota and brain structure changes is still unclear. We conducted a Mendelian randomization (MR) study to examine the bidirectional causality between the gut microbiota (211 taxa, including 131 genera, 35 families, 20 orders, 16 classes and 9 phyla; N = 18,340 individuals) and age-independent/dependent longitudinal changes in brain structure across the lifespan (N = 15,640 individuals aged 4~99 years). We identified causal associations between the gut microbiota and age-independent/dependent longitudinal changes in brain structure, such as family Peptostreptococcaceae with age-independent longitudinal changes of cortical gray matter (GM) volume and genus Faecalibacterium with age-independent average cortical thickness and cortical GM volume. Taking age-independent longitudinal changes in brain structure across the lifespan as exposures, there were causal relationships between the surface area and genus Lachnospiraceae. Our findings may serve as fundamentals for further research on the genetic mechanisms and biological treatment of complex traits and diseases associated with the gut microbiota and the brain structure change rate.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Análisis de la Aleatorización Mendeliana , Encéfalo , Sustancia Gris , Clostridiales , Estudio de Asociación del Genoma Completo
18.
Mol Psychiatry ; 28(11): 4867-4876, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37612365

RESUMEN

The aberrant aging hypothesis of schizophrenia (SCZ) and autism spectrum disorder (ASD) has been proposed, and the DNA methylation (DNAm) clock, which is a cumulative evaluation of DNAm levels at age-related CpGs, could serve as a biological aging indicator. This study evaluated epigenetic brain aging of ASD and SCZ using Horvath's epigenetic clock, based on two public genome-wide DNA methylation datasets of post-mortem brain samples (NASD = 222; NSCZ = 142). Total subjects were further divided into subgroups by gender and age. The epigenetic age acceleration (AgeAccel) for each sample was calculated as the residual value resulting from the regression model and compared between groups. Results showed DNAm age has a strong correlation with chronological age in both datasets across multiple brain regions (P < 0.05). When divided into equally sized age groups, the AgeAccel of the cerebellum (CB) region from people over 45 years of age was greater compared to the control sample (AgeAccel of ASD vs control: 5.069 vs -6.249; P < 0.001). And a decelerated epigenetic aging process was observed in the CB region of individuals with SCZ aged 50-70 years (AgeAccel of SCZ vs control: -3.171 vs 2.418; P < 0.05). However, our results showed no significant difference in AgeAccel between ASD and control groups, and between SCZ and control groups in the total and gender-specific groups (P > 0.05). This study's results revealed some evidence for aberrant epigenetic CB brain aging in old-aged patients with ASD and SCZ, indicating a different pattern of CB aging in older adults with these two diseases. However, further studies of larger ASD and SCZ cohorts are necessary to make definitive conclusions on this observation.


Asunto(s)
Trastorno del Espectro Autista , Esquizofrenia , Humanos , Anciano , Persona de Mediana Edad , Esquizofrenia/genética , Trastorno del Espectro Autista/genética , Encéfalo , Envejecimiento/genética , Epigénesis Genética/genética , Metilación de ADN/genética , Cerebelo
19.
J Addict Med ; 17(3): 319-325, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37267176

RESUMEN

OBJECTIVES: Alcohol dependence accounts for a large proportion of the global burden of disease and disability. This study aims to investigate the candidate genes and chemicals associated with alcohol dependence. METHODS: Using data from published alcohol dependence genome-wide association studies, we first conducted a proteome-wide association study of alcohol dependence by integrating alcohol dependence genome-wide association studies with 2 human brain reference proteomes of dorsolateral prefrontal cortex from the Religious Order Study and Rush Memory and Aging Project and the Banner Sun Health Research Institute. Then, based on the identified genes in proteome-wide association study, we conducted functional enrichment analysis and chemical-related functional enrichment analysis to detect the related Gene Ontology terms and chemicals. RESULTS: Proteome-wide association study identified several potential candidate genes for alcohol dependence, such as GOT2 ( P = 7.59 × 10 -6 ) and C3orf33 ( P = 5.00 × 10 -3 ). Furthermore, functional enrichment analysis identified multiple candidate Gene Ontology terms associated with alcohol dependence, such as glyoxylate metabolic process (adjusted P = 2.99 × 10 -6 ) and oxoglutarate metabolic process (adjusted P = 9.95 × 10 -6 ). Chemical-related functional enrichment analysis detected several alcohol dependence-related candidate chemicals, such as pitavastatin ( P = 2.00 × 10 -4 ), cannabinoids ( P = 4.00 × 10 -4 ), 11-nor-Δ(9)-tetrahydrocannabinol-9-carboxylic acid ( P = 4.00 × 10 -4 ), and gabapentin ( P = 2.00 × 10 -3 ). CONCLUSIONS: Our study reports multiple candidate genes and chemicals associated with alcohol dependence, providing novel clues for understanding the biological mechanism of alcohol dependence.


Asunto(s)
Alcoholismo , Transcriptoma , Humanos , Alcoholismo/genética , Proteoma/genética , Estudio de Asociación del Genoma Completo , Ontología de Genes , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple
20.
Microbes Infect ; 25(7): 105170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37315735

RESUMEN

OBJECTIVES: Previous studies identified a number of diseases were associated with 2019 coronavirus disease (COVID-19). However, the associations between these diseases related viral infections and COVID-19 remains unknown now. METHODS: In this study, we utilized single nucleotide polymorphisms (SNPs) related to COVID-19 from genome-wide association study (GWAS) and individual-level genotype data from the UK biobank to calculate polygenic risk scores (PRS) of 487,409 subjects for eight COVID-19 clinical phenotypes. Then, multiple logistic regression models were established to assess the correlation between serological measurements (positive/negative) of 25 viruses and the PRS of eight COVID-19 clinical phenotypes. And we performed stratified analyses by age and gender. RESULTS: In whole population, we identified 12 viruses associated with the PRS of COVID-19 clinical phenotypes, such as VZV seropositivity for Varicella Zoster Virus (Unscreened/Exposed_Negative: ß = 0.1361, P = 0.0142; Hospitalized/Unscreened: ß = 0.1167, P = 0.0385) and MCV seropositivity for Merkel Cell Polyomavirus (Unscreened/Exposed_Negative: ß = -0.0614, P = 0.0478). After age stratification, we identified seven viruses associated with the PRS of eight COVID-19 clinical phenotypes in the age < 65 years group. After gender stratification, we identified five viruses associated with the PRS of eight COVID-19 clinical phenotypes in the women group. CONCLUSION: Our study findings suggest that the genetic susceptibility to different COVID-19 clinical phenotypes is associated with the infection status of various common viruses.


Asunto(s)
COVID-19 , Virosis , Humanos , Femenino , Anciano , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , COVID-19/genética , Genotipo , Factores de Riesgo , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA