RESUMEN
Vitellogenins (Vgs) are critical for the development and fecundity of insects. As such, these essential proteins can be used by plants to reliably sense the presence of insects. We addressed this with a combination of molecular and chemical analyses, genetic transformation, bioactivity tests, and insect performance assays. The small N-terminal subunit of Vgs of the planthopper Nilaparvata lugens (NlVgN) was found to trigger strong defense responses in rice when it enters the plants during feeding or oviposition by the insect. The defenses induced by NlVgN not only decreased the hatching rate of N. lugens eggs, but also induced volatile emissions in plants, which rendered them attractive to a common egg parasitoid. VgN of other planthoppers triggered the same defenses in rice. We further show that VgN deposited during planthopper feeding compared with during oviposition induces a somewhat different response, probably to target the appropriate developmental stage of the insect. We also confirm that NlVgN is essential for planthopper growth, development, and fecundity. This study demonstrates that VgN in planthopper eggs and saliva acts as a reliable and unavoidable elicitor of plant defenses. Its importance for insect performance precludes evolutionary adaptions to prevent detection by rice plants.
Asunto(s)
Hemípteros , Oryza , Animales , Femenino , Saliva , Vitelogeninas/metabolismo , Oryza/metabolismo , Insectos , Hemípteros/fisiologíaRESUMEN
As one of the most outstanding materials, the analysis of the structure and function of hydrogels has been extensively carried out to tailor and adapt them to various fields of application. The high water content, which is beneficial for plenty of applications in the biomedical setting, prevents the adoption of hydrogels in flexible electronics and sensors in real life applications, because hydrogels lose their excellent properties, including conductivity, transparency, flexibility, etc., upon freezing at sub-zero temperatures. Therefore, depressing the liquid-solid phase transition temperature is a powerful means to expand the application scope of hydrogels, and will benefit the chemical engineering and materials science communities. This review summarizes the recent research progress of anti-freezing hydrogels. At first, approaches for the generation of anti-freezing (hydro)gels are introduced and their anti-freezing mechanisms and performances are briefly discussed. These approaches are either based on addition of salts, alcohols (cryoprotectants and organohydrogels), and ionic liquids (ionogels), modification of the polymer network or a combination of several techniques. Then, a concise overview of applications leveraged by the widened temperature resistance is provided and future research areas and developments are envisaged.
Asunto(s)
Hidrogeles , Líquidos Iónicos , Biomimética , Conductividad Eléctrica , PolímerosRESUMEN
Inspired by nature, diverse biomimetic hydrogel actuators are fabricated and become one of the most essential components of bionics research. Usually, the anisotropic structure of a hydrogel actuator is generated at the early fabrication process, only a specific shape transformation behavior can be produced under external stimuli, and thus has limited the development of hydrogel actuators toward the biomimetic shape deformation behavior. Herein, a novel bilayer hydrogel having a thermoresponsive actuating layer and a metal ion-responsive memorizing layer is proposed, therefore, a 2D hydrogel film can be fixed into various 3D shapes via supramolecular metal-ligand coordination, with further realizing programmable 4D shape deformation under the stimulus of temperature. By manipulating the temporary shapes via shape memory behavior, various temporary anisotropic structures can be obtained via the bilayer hydrogel, thus producing diverse reversible shape deformation performances, which is expected to promote the development of intelligent polymeric materials.
RESUMEN
As one of the most promising intelligent materials, polymeric hydrogel actuators could produce reversible shape change upon external stimuli. Although complex shape deformation from 2D to 3D have been achieved, the realization of actuating behavior from 3D to 3D is still a significant challenge. Herein, an effective strategy to develop a novel bilayer hollow spherical hydrogel actuator is proposed. Through immersing a Ca2+ incorporated gelatin core into alginate solution, an ionic-strength-responsive alginate layer will be formed along the gelatin core via alginate-Ca2+ crosslinks, and then another thermo-responsive alginate-poly(2-(dimethylamino)ethyl methacrylate)(Alg-PDMAEMA) layer is introduced to achieve a bilayer hydrogel with ionic strength and temperature dual responsiveness. A hollow hydrogel capsule could be obtained if a spherical gelatin core is applied, and it could produce complex shape deformations from 3D to 3D upon the trigger of ionic strength and temperatures changes. The present work may offer new inspirations for the development of novel intelligent polymeric hydrogel actuators.
Asunto(s)
Hidrogeles/química , Membrana Dobles de Lípidos/química , Temperatura , Estructura Molecular , Concentración Osmolar , Tamaño de la Partícula , Porosidad , Propiedades de SuperficieRESUMEN
Tillandsia species with degenerated roots have evolved into hygroscopic leaves that absorb moisture from air. This interesting biological adaptability has inspired us to develop an integrated hygroscopic photothermal organogel (POG) to achieve a solar-powered atmospheric water harvesting (AWH). The well-designed hydrophilic co-polymeric skeleton is fabricated to accommodate hygroscopic glycerin medium, which enables the POG self-contained property, mechanically flexibility and synergistic enhancement of moisture sorption. The integration of interpenetrated photothermal component of poly-pyrrole-dopamine (P-Py-DA) can endow the POG an efficient solar-to-thermal property for controllable solar-driven interfacial water releasing. The integrated POG has an equilibrium moisture sorption of 16.01â kg m-2 at the RH of 90 %, and daily water production as high as 2.43â kg m-2 day-1 is achieved in actual outdoor experiments.
RESUMEN
Inspired by the high importance of hollow structures in nature such as blood vessels and bamboos in matter transportation, properties enhancement, or even survival of living creatures, the creation of hollow materials remains of considerable interest. However, constructing hollow unique living-like soft and wet polymeric hydrogels with desirable structures and functionalities is still a big challenge. Here, we reported a robust and effective strategy to fabricate complex three-dimensional (3D) hollow polymeric hydrogel with designed shape and function diversity on the basis of supramolecular interactions. By placing a Ca2+ included gelatin core into the solution of alginate, hydrogel shell could be formed along with the shape of the gelatin core via coordination between alginate chains and Ca2+ diffused from gelatin. The hollow hydrogel could finally be obtained by dissolving the gelatin core. Various complex 3D hollow structures could be achieved by designing/constructing assembled gelatin core as a building block with adjustable supramolecular metal coordination position and strength. Moreover, hollow hydrogels with function diversity could be developed by introducing functional polymers or nanoparticles into the hydrogel wall. This work has made important progress in developing hollow polymeric hydrogel with desirable structures, shapes, and various functional applications including soft actuators and chemical reaction containers.
RESUMEN
Thermoresponsive hydrogel actuators have attracted tremendous interest due to their promising applications in artificial muscles, soft robotics, and flexible electronics. However, most of these materials are based on polymers with lower critical solution temperature (LCST), while those from upper critical solution temperature (UCST) are rare. Herein, we report a multiple-responsive UCST hydrogel actuator based on the complex of poly(acrylic acid) (PAAc) and poly(acrylamide) (PAAm). By applying a heterogeneous photopolymerization, a bilayer hydrogel was obtained, including a layer of the interpenetrating network (IPN) of PAAm/PAAc and a layer of a single network of PAAm. When cooled down below the UCST, the PAAm/PAAc layer contracted due to the hydrogen bonding of the two polymers while the PAAm layer stays in swelling state, driving the hydrogel to curl. By adjusting the composition of the two layers, the amplitude of actuation behavior could be regulated. By creating patterned IPN domains with photomasks, the hydrogel could deform into complex two-dimensional (2D) and three-dimensional (3D) shapes. An active motion was realized in both water and oil bath, thanks to the internal water exchange between the two layers. Interestingly, the hydrogel actuator is also responsive to urea and salts (Na2SO4, NaCl, NaSCN), due to that the strength of the hydrogen bonds in the IPN changes with the additives. Overall, the current study realized an anisotropic UCST transition by introducing asymmetrically distributed polymer-polymer hydrogen bonds, which would inspire new inventions of intelligent materials.
RESUMEN
As one of the most important smart materials, fluorescent hydrogel actuators can produce both color and shape changes under external stimuli. In the present work, an effective approach to develop a novel fluorescent hydrogel actuator with pH and thermo dual responsiveness is proposed. Through incorporating pH-responsive perylene tetracarboxylic acid (PTCA), which is a typical fluorescent moiety with aggregation-caused quenching (ACQ) effect, into an anisotropic poly(N-isopropylacrylamide)-polyacrylamide (PNIPAm-PAAm) structure, the obtained hydrogel exhibits stable thermoresponsive shape deformation and switchable fluorescence performance upon a pH trigger. Therefore, fluorescence-quenching-based and actuation-based information can be revealed when exposed to UV light and immersed into warm water, respectively. Moreover, the thermoresponsive actuating behavior can be applied to further hide the fluorescence-quenching-based images. The present work may provide new insights into the design and preparation of novel stimuli-responsive hydrogel actuators.
Asunto(s)
Colorantes Fluorescentes/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Temperatura , Fluorescencia , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Propiedades de SuperficieRESUMEN
Inspired by the freezing tolerance performances found in living creatures, an effect approach is presented to develop novel antifreezing polymeric organohydrogel actuators. Through construction of a bilayer hydrogel including a nonresponsive polyacrylamide (PAAm) layer and a pH-responsive polyacrylic acid (PAA) layer in the presence of a mixed solvent of water and glycerol, organohydrogel actuators that could produce various shape deformations at subzero temperatures have been achieved, and the actuating speed could be tuned by adjusting the temperature and the ratio between glycerol and water. Moreover, a series of application demonstrations including a weightlifting robot, artificial valve, and robotic arm have been displayed. In addition, by introducing the ionic compound KI into the glycerol-based organogel, flexible conductors that could perform stable sensing performance over a wide range of temperatures from -30°C to 60°C have been developed.
RESUMEN
Realization of shape memory process in polymeric hydrogels at ambient condition is a significant development to shape memory materials. The sound understanding of the dynamic shape memory process is fundamentally important but limited. Here, a novel shape memory hydrogel with simultaneously switchable fluorescence behavior is developed. The hydrogel is prepared by incorporating a pH-responsive fluorescent molecule, perylene tetracarboxylic acid, into chitosan-based hydrogel, and the assembly and disassembly of chitosan chains into microcrystals upon the trigger of pH are applied as reversible crosslinks to achieve shape memory effect. Therefore, the formation and disassociation of microcrystalline chitosan, and the switchable fluorescence performance happen concurrently, which bring convenience to monitoring the shape memory process by fluorescent imaging. Moreover, the erasable fluorescence behavior also gives the hydrogel potential applications in information storage.
Asunto(s)
Quitosano/química , Fluorescencia , Hidrogeles/química , Perileno/análogos & derivados , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Estructura Molecular , Perileno/química , Polímeros/síntesis química , Polímeros/químicaRESUMEN
A general strategy for fabricating a double layer self-deformed shape memory hydrogel which includes a thermo-responsive actuating layer and a pH-responsive memorizing layer is presented. Compared with traditional shape memory polymer systems, the temporary shape of the hydrogel could be generated by a thermo-responsive actuating layer upon the trigger of heat without the need for an external force, which could be further memorized by the pH-responsive memorizing layer.
RESUMEN
The brown planthopper (BPH), Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), a major pest of rice in Asia, is able to successfully puncture sieve tubes in rice with its piercing stylet and then to ingest phloem sap. How BPH manages to continuously feed on rice remains unclear. Here, we cloned the gene NlSEF1, which is highly expressed in the salivary glands of BPH. The NlSEF1 protein has EF-hand Ca2+-binding activity and can be secreted into rice plants when BPH feed. Infestation of rice by BPH nymphs whose NlSEF1 was knocked down elicited higher levels of Ca2+ and H2O2 but not jasmonic acid, jasmonoyl-isoleucine (JA-Ile) and SA in rice than did infestation by control nymphs; Consistently, wounding plus the recombination protein NlSEF1 suppressed the production of H2O2 in rice. Bioassays revealed that NlSEF1-knockdown BPH nymphs had a higher mortality rate and lower feeding capacity on rice than control nymphs. These results indicate that the salivary protein in BPH, NlSEF1, functions as an effector and plays important roles in interactions between BPH and rice by mediating the plant's defense responses.