Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Chem X ; 20: 100916, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144853

RESUMEN

The lack of an efficient approach for quality evaluation of sweet potatoes significantly hinders progress in quality breeding. Therefore, this study aimed to establish a near-infrared spectroscopy (NIRS) assay for high-throughput analysis of sweet potato root quality, including total starch, amylose, amylopectin, the ratio of amylopectin to amylose, soluble sugar, crude protein, total flavonoid content, and total phenolic content. A total of 125 representative samples were utilized and a dual-optimized strategy (optimization of sample subset partitioning and variable selection) was applied to NIRS modeling. Eight optimal equations were developed with an excellent coefficient of determination for the calibration (R2C) at 0.95-0.99, cross-validation (R2CV) at 0.93-0.98, external validation (R2V) at 0.89-0.96, and the ratio of prediction to deviation (RPD) at 6.33-11.35. Overall, these NIRS models provide a feasible approach for high-throughput analysis of root quality and permit large-scale screening of elite germplasm in future sweet potato breeding.

2.
Food Chem X ; 17: 100542, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36824146

RESUMEN

This study investigated the impact of baking, boiling, and steaming on the taste, flavor, and chemical profile of yellow-fleshed sweetpotatoes (YFSP). Baked YFSP were sweeter, more palatable, and more flavorful than both steamed and boiled YFSP. Baking increased the YFSP soluble sugar content from 9.12% to 36.65%. Specifically, maltose increased by 200-fold and this possibly accounted for the sweetness of baked YFSP. From the Gas Chromatography-Mass Spectrometry analysis, the contents of furans and terpenes increased with baking, endowing baked YFSP with an aroma. On the contrary, boiling retained more carotenoids than the other cooking methods. Although cooking clearly altered YFSP, bioactive substances were predominantly preserved as only 72 out of 706 metabolites were identified as differentially accumulated metabolites between cooked and raw samples. Taken together, baked YFSP had high levels of sugars and volatile compounds, and the three cooking methods had little effect on chemical compounds. This comprehensive evaluation of cooked YFSP is a basis for sweetpotato processing and consumer choice.

3.
Front Plant Sci ; 13: 993682, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340393

RESUMEN

Sweetpotato (Ipomoea batatas L.) with different depths of yellow color contains different compositions of carotenoids, which are beneficial for human health. In this study, we performed an integrated analysis of metabolomic and transcriptomic to identify key genes playing a major role in carotenoid coloration in sweetpotato tuberous roots. Herein, 14 carotenoids were identified in five sweetpotatoes. Orange-red and orange cultivars were dominated by ß-carotene (385.33 µg/g and 85.07 µg/g), yellow cultivar had a high ß-cryptoxanthin (11.23 µg/g), light-yellow cultivar was rich in zeaxanthin (5.12 µg/g), whereas lutein (3.34 µg/g) was the main carotenoid in white cultivar. Furthermore, 27 differentially expressed genes involved in carotenoid metabolism were identified based on comparative transcriptome. Weighted gene co-expression network analysis identified 15 transcription factors highly associated with carotenoid content in sweetpotatoes. These results provide valuable information for revealing the regulatory mechanism of carotenoid metabolism in different-colored sweetpotato tuberous roots.

5.
Front Plant Sci ; 13: 877695, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35599902

RESUMEN

Purple sweet potato is considered as a healthy food because of its high anthocyanins. To understand the coloring mechanism and quality change between purple-fleshed sweet potato (cv. Xuzi201) and its cream fleshed mutant (M1001), a combined metabolomic and transcriptomic analysis was performed. The metabolome data showed that 4 anthocyanins, 19 flavones, 6 flavanones, and 4 flavonols dramatically decreased in M1001, while the contents of 3 isoflavones, 3 flavonols, 4 catechins, and 2 proanthocyanins increased. Transcriptomic analyses indicated that the expression of 49 structural genes in the flavonoid pathway and transcription factors (TFs) (e.g., bHLH2, R2R3-MYB, MYB1) inducting anthocyanin biosynthesis were downregulated, but the repressor MYB44 was upregulated. The IbMYB1-2 gene was detected as a mutation gene in M1001, which is responsible for anthocyanin accumulation in the storage roots. Thus, the deficiency of purple color in the mutant is due to the lack of anthocyanin accumulation which was regulated by IbMYB1. Moreover, the accumulation of starch and aromatic volatiles was significantly different between Xuzi201 and M1001. These results not only revealed the mechanism of color mutation but also uncovered certain health-promoting compounds in sweet potato.

6.
Molecules ; 26(19)2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34641353

RESUMEN

Volatile compounds are the main chemical species determining the characteristic aroma of food. A procedure based on headspace solid-phase microextraction (HP-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) was developed to investigate the volatile compounds of sweet potato. The experimental conditions (fiber coating, incubation temperature and time, extraction time) were optimized for the extraction of volatile compounds from sweet potato. The samples incubated at 80 °C for 30 min and extracted at 80 °C by the fiber with a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) coating for 30 min gave the most effective extraction of the analytes. The optimized method was applied to study the volatile profile of four sweet potato cultivars (Anna, Jieshu95-16, Ayamursaki, and Shuangzai) with different aroma. In total, 68 compounds were identified and the dominants were aldehydes, followed by alcohols, ketones, and terpenes. Significant differences were observed among the volatile profile of four cultivars. Furthermore, each cultivar was characterized by different compounds with typical flavor. The results substantiated that the optimized HS-SPME GC-MS method could provide an efficient and convenient approach to study the flavor characteristics of sweet potato. This is the basis for studying the key aroma-active compounds and selecting odor-rich accessions, which will help in the targeted improvement of sweet potato flavor in breeding.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Ipomoea batatas/metabolismo , Odorantes/análisis , Microextracción en Fase Sólida/normas , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/aislamiento & purificación , Microextracción en Fase Sólida/métodos , Gusto , Temperatura
7.
BMC Genomics ; 21(1): 280, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245402

RESUMEN

BACKGROUND: Phytophthora root rot (PRR) caused by Phytophthora sojae (P. sojae) is one of the most serious limitations to soybean production worldwide. The identification of resistance gene(s) and their incorporation into elite varieties is an effective approach for breeding to prevent soybean from being harmed by this disease. A valuable mapping population of 228 F8:11 recombinant inbred lines (RILs) derived from a cross of the resistant cultivar Guizao1 and the susceptible cultivar BRSMG68 and a high-density genetic linkage map with an average distance of 0.81 centimorgans (cM) between adjacent bin markers in this population were used to map and explore candidate gene(s). RESULTS: PRR resistance in Guizao1 was found to be controlled by a single Mendelian locus and was finely mapped to a 367.371-kb genomic region on chromosome 3 harbouring 19 genes, including 7 disease resistance (R)-like genes, in the reference Willliams 82 genome. Quantitative real-time PCR assays of possible candidate genes revealed that Glyma.03 g05300 was likely involved in PRR resistance. CONCLUSIONS: These findings from the fine mapping of a novel Rps locus will serve as a basis for the cloning and transfer of resistance genes in soybean and the breeding of P. sojae-resistant soybean cultivars through marker-assisted selection.


Asunto(s)
Resistencia a la Enfermedad , Glycine max/parasitología , Phytophthora/patogenicidad , Proteínas de Plantas/genética , Mapeo Cromosómico , Cromosomas Bacterianos/genética , Ligamiento Genético , Secuenciación de Nucleótidos de Alto Rendimiento , Fitomejoramiento , Enfermedades de las Plantas/parasitología , Análisis de Secuencia de ADN , Glycine max/genética
8.
Theor Appl Genet ; 132(6): 1833-1845, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30826863

RESUMEN

KEY MESSAGE: The Mendelian locus conferring resistance to powdery mildew in soybean was precisely mapped using a combination of phenotypic screening, genetic analyses, and high-throughput genome-wide sequencing. Powdery mildew (PMD), caused by the fungus Microsphaera diffusa Cooke & Peck, leads to considerable yield losses in soybean [Glycine max (L.) Merr.] under favourable environmental conditions and can be controlled by identifying germplasm resources with resistance genes. In this study, resistance to M. diffusa among resistant varieties B3, Fudou234, and B13 is mapped as a single Mendelian locus using three mapping populations derived from crossing susceptible with resistant cultivars. The position of the PMD resistance locus in B3 is located between simple sequence repeat (SSR) markers GMES6959 and Satt_393 on chromosome 16, at genetic distances of 7.1 cM and 4.6 cM, respectively. To more finely map the PMD resistance gene, a high-density genetic map was constructed using 248 F8 recombinant inbred lines derived from a cross of Guizao1 × B13. The final map includes 3748 bins and is 3031.9 cM in length, with an average distance of 0.81 cM between adjacent markers. This genotypic analysis resulted in the precise delineation of the B13 PMD resistance locus to a 188.06-kb genomic region on chromosome 16 that harbours 28 genes, including 17 disease resistance (R)-like genes in the reference Williams 82 genome. Quantitative real-time PCR assays of possible candidate genes revealed differences in the expression levels of 9 R-like genes between the resistant and susceptible parents. These results provide useful information for marker-assisted breeding and gene cloning for PMD resistance.


Asunto(s)
Actinomycetales/patogenicidad , Resistencia a la Enfermedad/genética , Genoma de Planta , Estudio de Asociación del Genoma Completo , Glycine max/genética , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Desequilibrio de Ligamiento , Repeticiones de Microsatélite , Fenotipo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Glycine max/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...