Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.430
Filtrar
1.
Int Immunopharmacol ; 134: 112258, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38744178

RESUMEN

Ferroptosis, a form of regulated cell death (RCD), exhibits distinct characteristics such as iron-dependence and lipid peroxidation accumulation (ROS), setting it apart from other types of cell death like apoptosis and necrosis. Its role in cancer biology is increasingly recognized, particularly its potential interaction with tumor microenvironment (TME) and CD8 T cells in cancer immunotherapy. However, the impact of ferroptosis on TME cell infiltration remains unclear. In this study, we conducted unsupervised clustering analysis on patient data from public databases, identifying three ferroptosis patterns with distinct TME cell infiltration characteristics: immune-inflamed, immune-excluded, and immune-desert phenotypes. We developed a ferroptosis score based on differentially expressed genes (DEGs) among these patterns, which correlated with various biological features including chemotherapy-resistance and immune cells infiltration. Despite patients with high ferroptosis scores exhibiting worse prognosis, they showed increased likelihood of benefiting from immunotherapy. Our findings highlight the importance of ferroptosis-related patterns in understanding TME cell infiltration and suggest novel strategies for drug combinations and immune-related therapies.

2.
bioRxiv ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38746256

RESUMEN

Smooth muscle cells (SMCs) of cardiac and neural crest origin contribute to the developing proximal aorta and are linked to disease propensity in adults. We analyzed single-cell transcriptomes of SMCs from mature thoracic aortas in mice to determine basal states and changes after disrupting transforming growth factor-ß (TGFß) signaling necessary for aortic homeostasis. A minority of Myh11 lineage-marked SMCs differentially expressed genes suggestive of embryological origin. Additional analyses in Nkx2-5 and Wnt1 lineage-marked SMCs derived from cardiac and neural crest progenitors, respectively, showed both lineages contributed to a major common cluster and each lineage to a minor distinct cluster. Common cluster SMCs extended from root to arch, cardiac subset cluster SMCs from root to mid-ascending, while neural crest subset cluster SMCs were restricted to the arch. The neural crest subset cluster had greater expression of a subgroup of TGFß-dependent genes suggesting specific responsiveness or skewed extracellular matrix synthesis. Nonetheless, deletion of TGFß receptors in SMCs resulted in similar transcriptional changes among all clusters, primarily decreased extracellular matrix molecules and modulators of TGFß signaling. Many embryological markers of murine aortic SMCs were not confirmed in adult human aortas. We conclude: (i) there are multiple subtypes of cardiac- and neural crest-derived SMCs with shared or distinctive transcriptional profiles, (ii) neural crest subset SMCs with increased expression of certain TGFß-inducible genes are not spatially linked to the aortic root predisposed to aneurysms from aberrant TGFß signaling, and (iii) loss of TGFß responses after receptor deletion is uniform among SMCs of different embryological origins.

3.
Nat Commun ; 15(1): 3896, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719899

RESUMEN

As one of the most attractive methods for the synthesis of ordered hierarchically porous crystalline materials, the soft-template method has not appeared in covalent organic frameworks (COFs) due to the incompatibility of surfactant self-assembly and guided crystallization process of COF precursors in the organic phase. Herein, we connect the soft templates to the COF backbone through ionic bonds, avoiding their crystallization incompatibilities, thus introducing an additional ordered arrangement of soft templates into the anionic microporous COFs. The ion exchange method is used to remove the templates while maintaining the high crystallinity of COFs, resulting in the construction of COFs with ordered hierarchically micropores/mesopores, herein named OHMMCOFs (OHMMCOF-1 and OHMMCOF-2). OHMMCOFs exhibit significantly enhanced functional group accessibility and faster mass transfer rate. The extrinsic porosity can be adjusted by changing the template length, concentration, and ratio. Cationic guanidine-based COFs (OHMMCOF-3) are also constructed using the same method, which verifies the scalability of the soft-template strategy. This work provides a path for constructing ordered and tunable extrinsic porosity in COFs with greatly improved mass transfer efficiency and functional group accessibility.

4.
Comb Chem High Throughput Screen ; 27(5): 786-796, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38773797

RESUMEN

OBJECTIVE: Diabetic osteoporosis (DOP) belongs to the group of diabetes-induced secondary osteoporosis and is the main cause of bone fragility and fractures in many patients with diabetes. The aim of this study was to determine whether Ziyin Bushen Fang (ZYBSF) can improve DOP by inhibiting autophagy and oxidative stress. METHODS: Type 1 diabetes mellitus (T1DM) was induced in rats using a high-fat high-sugar diet combined with streptozotocin. Micro-CT scanning was used to quantitatively observe changes in the bone microstructure in each group. Changes in the serum metabolites of DOP rats were analyzed using UHPLC-QTOF-MS. The DOP mouse embryonic osteoblast precursor cell model (MC3T3-E1) was induced using high glucose levels. RESULTS: After ZYBSF treatment, bone microstructure significantly improved. The bone mineral density, trabecular number, and trabecular thickness in the ZYBSF-M and ZYBSF-H groups significantly increased. After ZYBSF treatment, the femur structure of the rats was relatively intact, collagen fibers were significantly increased, and osteoporosis was significantly improved. A total of 1239 metabolites were upregulated and 1527 were downregulated in the serum of T1DM and ZYBSF-treated rats. A total of 20 metabolic pathways were identified. In cellular experiments, ZYBSF reduced ROS levels and inhibited the protein expression of LC3II / I, Beclin-1, and p-ERK. CONCLUSION: ZYBSF may improve DOP by inhibiting the ROS/ERK-induced autophagy signaling pathway.


Asunto(s)
Autofagia , Medicamentos Herbarios Chinos , Osteoporosis , Estrés Oxidativo , Animales , Autofagia/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Ratas , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Ratones , Diabetes Mellitus Experimental/tratamiento farmacológico , Masculino , Ratas Sprague-Dawley , Estreptozocina , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/complicaciones , Densidad Ósea/efectos de los fármacos
5.
Theranostics ; 14(7): 2794-2815, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38773984

RESUMEN

Rationale: Idiopathic pulmonary fibrosis (IPF) is an irreversible, fatal interstitial lung disease lacking specific therapeutics. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD) salvage biosynthesis pathway and a cytokine, has been previously reported as a biomarker for lung diseases; however, the role of NAMPT in pulmonary fibrosis has not been elucidated. Methods: We identified the NAMPT level changes in pulmonary fibrosis by analyzing public RNA-Seq databases, verified in collected clinical samples and mice pulmonary fibrosis model by Western blotting, qRT-PCR, ELISA and Immunohistochemical staining. We investigated the role and mechanism of NAMPT in lung fibrosis by using pharmacological inhibition on NAMPT and Nampt transgenic mice. In vivo macrophage depletion by clodronate liposomes and reinfusion of IL-4-induced M2 bone marrow-derived macrophages (BMDMs) from wild-type mice, combined with in vitro cell experiments, were performed to further validate the mechanism underlying NAMPT involving lung fibrosis. Results: We found that NAMPT increased in the lungs of patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis. NAMPT inhibitor FK866 alleviated BLM-induced pulmonary fibrosis in mice and significantly reduced NAMPT levels in bronchoalveolar lavage fluid (BALF). The lung single-cell RNA sequencing showed that NAMPT expression in monocytes/macrophages of IPF patients was much higher than in other lung cells. Knocking out NAMPT in mouse monocytes/macrophages (Namptfl/fl;Cx3cr1CreER) significantly alleviated BLM-induced pulmonary fibrosis in mice, decreased NAMPT levels in BALF, reduced the infiltration of M2 macrophages in the lungs and improved mice survival. Depleting monocytes/macrophages in Namptfl/fl;Cx3cr1CreER mice by clodronate liposomes and subsequent pulmonary reinfusion of IL-4-induced M2 BMDMs from wild-type mice, reversed the protective effect of monocyte/macrophage NAMPT-deletion on lung fibrosis. In vitro experiments confirmed that the mechanism of NAMPT engaged in pulmonary fibrosis is related to the released NAMPT by macrophages promoting M2 polarization in a non-enzyme-dependent manner by activating the STAT6 signal pathway. Conclusions: NAMPT prompts bleomycin-induced pulmonary fibrosis by driving macrophage M2 polarization in mice. Targeting the NAMPT of monocytes/macrophages is a promising strategy for treating pulmonary fibrosis.


Asunto(s)
Bleomicina , Citocinas , Fibrosis Pulmonar Idiopática , Macrófagos , Ratones Endogámicos C57BL , Nicotinamida Fosforribosiltransferasa , Animales , Nicotinamida Fosforribosiltransferasa/metabolismo , Ratones , Macrófagos/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Citocinas/metabolismo , Humanos , Modelos Animales de Enfermedad , Pulmón/patología , Pulmón/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Ratones Transgénicos , Masculino , Piperidinas/farmacología , Femenino , Acrilamidas
6.
Front Oncol ; 14: 1383809, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774408

RESUMEN

PGC1α, a central player in mitochondrial biology, holds a complex role in the metabolic shifts seen in cancer cells. While its dysregulation is common across major cancers, its impact varies. In some cases, downregulation promotes aerobic glycolysis and progression, whereas in others, overexpression escalates respiration and aggression. PGC1α's interactions with distinct signaling pathways and transcription factors further diversify its roles, often in a tissue-specific manner. Understanding these multifaceted functions could unlock innovative therapeutic strategies. However, challenges exist in managing the metabolic adaptability of cancer cells and refining PGC1α-targeted approaches. This review aims to collate and present the current knowledge on the expression patterns, regulators, binding partners, and roles of PGC1α in diverse cancers. We examined PGC1α's tissue-specific functions and elucidated its dual nature as both a potential tumor suppressor and an oncogenic collaborator. In cancers where PGC1α is tumor-suppressive, reinstating its levels could halt cell proliferation and invasion, and make the cells more receptive to chemotherapy. In cancers where the opposite is true, halting PGC1α's upregulation can be beneficial as it promotes oxidative phosphorylation, allows cancer cells to adapt to stress, and promotes a more aggressive cancer phenotype. Thus, to target PGC1α effectively, understanding its nuanced role in each cancer subtype is indispensable. This can pave the way for significant strides in the field of oncology.

7.
Clin Transl Oncol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758385

RESUMEN

OBJECTIVE: The objective of this study is to assess the clinical pathological attributes of Hepatoid Adenocarcinoma of the Stomach (HAS) and to delineate the differential diagnostic considerations about it. METHOD: The investigation involved analyzing 31 HAS cases using histomorphological assessment, immunohistochemical profiling, and relevant gene detection methodologies. RESULTS: Among the 31 HAS cases, 9 (29.0%) were of trabecular hepatoid adenocarcinoma of the stomach, 7 (22.6%) were of glandular hepatoid adenocarcinoma of the stomach, 4 (12.9%) were of nesting hepatoid adenocarcinoma of the stomach, 3 (9.7%) were of clear cell hepatoid adenocarcinoma of the stomach, and 8 (25.8%) were of diverse hepatoid adenocarcinoma of the stomach. Of these 31 cases, 24 were male, accounting for 77.4% of the cases. Serum alpha-fetoprotein (AFP) levels were notably elevated, with radioimmunoassay results reaching 1240 ng/ml; 28 out of 31 cases had AFP levels below 25 µg/l, accounting for 90.3%. Related genes: HER2 protein indicated positive expression on the cell membrane in 35.5% (11/31) of the cases; HER2 gene amplification detected by the FISH technique was 12.9% (4/31). Tumoral stromal lymphocytes exhibited a PD-1 positive expression rate of 58.1% (18/31). In gastric cancer tissues, the PD-L1 positive rate was 45.1% (14/31). CONCLUSION: HAS represents a distinctive subtype of gastric cancer with a propensity for mimicking other forms of tumors, underscoring the significance of discerning its unique histopathological attributes for accurate differential diagnosis and tailored therapeutic interventions.

8.
Clin Transl Sci ; 17(5): e13819, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747478

RESUMEN

The equivalence of absorption rates and extents between generic drugs and their reference formulations is crucial for ensuring therapeutic comparability. Bioequivalence (BE) studies are widely utilized and play a pivotal role in substantiating the approval and promotional efforts for generic drugs. Virtual BE simulation is a valuable tool for mitigating risks and guiding clinical BE studies, thereby minimizing redundant in vivo BE assessments. Herein, we successfully developed a physiologically based absorption model for virtual BE simulations, which precisely predicts the BE of the apixaban test and reference formulations. The modeling results confirm that the test and reference formulations were bioequivalent under both fasted and fed conditions, consistent with clinical studies. This highlights the efficacy of physiologically based absorption modeling as a powerful tool for formulation screening and can be adopted as a methodological and risk assessment strategy to detect potential clinical BE risks.


Asunto(s)
Modelos Biológicos , Pirazoles , Piridonas , Equivalencia Terapéutica , Piridonas/farmacocinética , Piridonas/administración & dosificación , Pirazoles/farmacocinética , Pirazoles/administración & dosificación , Humanos , Inhibidores del Factor Xa/farmacocinética , Inhibidores del Factor Xa/administración & dosificación , Medicamentos Genéricos/farmacocinética , Medicamentos Genéricos/administración & dosificación , Simulación por Computador , Administración Oral , Masculino
9.
Aging (Albany NY) ; 16(9): 8044-8069, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38742956

RESUMEN

Age-related macular degeneration (AMD) is a condition causing progressive central vision loss. Growing evidence suggests a link between cellular senescence and AMD. However, the exact mechanism by which cellular senescence leads to AMD remains unclear. Employing machine learning, we established an AMD diagnostic model. Through unsupervised clustering, two distinct AMD subtypes were identified. GO, KEGG, and GSVA analyses explored the diverse biological functions associated with the two subtypes. By WGCNA, we constructed a coexpression network of differential genes between the subtypes, revealing the regulatory role of hub genes at the level of transcription factors and miRNAs. We identified 5 genes associated with inflammation for the construction of the AMD diagnostic model. Additionally, we observed that the level of cellular senescence and pathways related to programmed cell death (PCD), such as ferroptosis, necroptosis, and pyroptosis, exhibited higher expression levels in subtype B than A. Immune microenvironments also differed between the subtypes, indicating potentially distinct pathogenic mechanisms and therapeutic targets. In summary, by leveraging cellular senescence-associated gene expression, we developed an AMD diagnostic model. Furthermore, we identified two subtypes with varying expression patterns of senescence genes, revealing their differential roles in programmed cell death, disease progression, and immune microenvironments within AMD.


Asunto(s)
Senescencia Celular , Biología Computacional , Degeneración Macular , Senescencia Celular/genética , Degeneración Macular/genética , Degeneración Macular/diagnóstico , Degeneración Macular/patología , Humanos , Redes Reguladoras de Genes , Perfilación de la Expresión Génica , Aprendizaje Automático , MicroARNs/genética , MicroARNs/metabolismo
10.
Sci Rep ; 14(1): 10056, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698147

RESUMEN

A new attempt of removing toluene waste gas using a three-dimensional electrode reaction device with nickel-iron bimetallic particle electrode is presented in this paper. The particle electrode was prepared by a simple liquid phase reduction method. Through bimetal modification, the particle electrode mass transfer rate is increased to 1.29 times, and the degradation efficiency of the reactor is increased by nearly 40%, which makes it possible to remove toluene waste gas by other electrochemical methods in addition to plasma method. The removal efficiency of the particle electrode can be stabilized at more than 80% after 5 cycles (50 h). At the same time, the relationship between independent working parameters and dependent variables is analyzed using the central composite design, and the operating parameters are optimized. Based on this study, the removal mechanism and possible degradation pathway of toluene were investigated. This study provides a supplement to the possibility and theoretical basis of new technology application for electrocatalytic oxidation removal of VOCs.

11.
Front Plant Sci ; 15: 1223351, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716340

RESUMEN

Introduction: Intra-speciic variation is the main source of functional trait diversity and has similar ecological effects as inter-speciic variation. Methods: We studied 79 species and 3546 individuals from 50 ixed monitoring plots in subtropical evergreen broad - leaved secondary forests in Zhejiang Province, China. Using trait gradient analysis, we examined nine traits (speciic leaf area, leaf dry matter content, wood density, leaf area, chlorophyll content, leaf nitrogen content, leaf phosphorus content, leaf potassium content, and nitrogen-phosphorus ratio) by decomposing species functional traits into alpha (within-community) and beta (among-communities) measure the impact of environmental gradients and the presence of other species on the variation of traits. Result: All nine functional traits showed some degree of differentiation in the forest communities, with a greater range of variation in alpha values than in beta values . Correlations were signiicantly different between the trait differences in the communities. The alpha values of each trait showed a higher correlation with other components than the beta values. The factors affecting intra-speciic trait variation were relatively complex. The alpha component had a more signiicant and stronger effect on intra-speciic trait variation compared to the beta component. Abiotic factors, such as soil nutrient content, soil nitrogen-phosphorus content, directly affected the beta component. In contrast, biotic factors, such as tree height variation, had a direct and stronger effect on the alpha component. Discussion: Our results demonstrate that alpha and beta components, as independent differentiation axes among coexisting species, have different sensitivities to different environmental factors and traits in different ecological strategies and spatial scales. Trait gradient analysis can more clearly reveal the variation patterns of species traits in communities, which will help to understand the scale effects and potential mechanisms of trait relationships.

12.
bioRxiv ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38712205

RESUMEN

Hypertension and transient increases in blood pressure from extreme exertion are risk factors for aortic dissection in patients with age-related vascular degeneration or inherited connective tissue disorders. Yet, the common experimental model of angiotensin II-induced aortopathy in mice appears independent of high blood pressure as lesions do not occur in response to an alternative vasoconstrictor, norepinephrine, and are not prevented by co-treatment with a vasodilator, hydralazine. We investigated vasoconstrictor administration to adult mice 1 week after disruption of TGFß signaling in smooth muscle cells. Norepinephrine increased blood pressure and induced aortic dissection by 7 days and even within 30 minutes that was rescued by hydralazine; results were similar with angiotensin II. Changes in regulatory contractile molecule expression were not of pathological significance. Rather, reduced synthesis of extracellular matrix yielded a vulnerable aortic phenotype by decreasing medial collagen, most dynamically type XVIII, and impairing cell-matrix adhesion. We conclude that transient and sustained increases in blood pressure cause dissection in aortas rendered vulnerable by inhibition of TGFß-driven extracellular matrix production by smooth muscle cells. A corollary is that medial fibrosis, a frequent feature of medial degeneration, may afford some protection against aortic dissection.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38758684

RESUMEN

BACKGROUND: The present study aimed to analyze and compare the efficacy of the anterolateral and posterolateral approaches for surgical treatment of supination-external rotation type IV ankle fractures. METHODS: This retrospective study enrolled 60 patients (60 feet) with supination-external rotation type IV ankle fractures, including 30 patients (30 feet) treated by means of the anterolateral approach and 30 patients (30 feet) treated by means of the posterolateral approach. Postoperative clinical efficacy was compared between the groups based on operation time, intraoperative blood loss, postoperative complications, fracture healing time, visual analog scale scores, Short Form-36 Health Survey scores, and American Orthopedic Foot and Ankle Society scores. Comparisons between the two groups were performed using independent-samples t tests and analyses of variance. Intragroup differences were compared using paired t tests, and the χ2 test was used to compare categorical variables. RESULTS: All 60 included patients completed follow-up ranging from 12 to 18 months (mean duration, 14.8 ± 3.5 months). Although baseline characteristics were similar in the two groups, there were significant differences in operation time (86.73 ± 17.44 min versus 111.23 ± 10.05 min; P < .001) and intraoperative blood loss (112.60 ± 25.05 mL versus 149.47 ± 44.30 mL; P < .001). Although fracture healing time (10.90 ± 0.66 weeks versus 11.27 ± 0.94 weeks; P = .087) was shorter in the anterolateral group than in the posterolateral group, the difference was not significant. Postoperative complications occurred in one and three patients in the anterolateral and posterolateral approach groups, respectively. Visual analog scale scores were significantly lower in the anterolateral group than in the posterolateral group (1.43 ± 0.50 versus 1.83 ± 0.75; P = .019), although there was no significant difference in Short Form-36 Health Survey scores between the groups (73.63 ± 4.07 versus 72.70 ± 4.04; P = .377). However, American Orthopedic Foot and Ankle Society scores were higher in the anterolateral group than in the posterolateral group (80.43 ± 4.32 versus 75.43 ± 11.32; P = .030). CONCLUSIONS: Both the anterolateral and posterolateral approaches can achieve good results in the treatment of supination-external rotation type IV ankle fractures. Compared with the posterolateral approach, the anterolateral approach is advantageous for the treatment of supination-external rotation type IV ankle fractures given its safety and ability to reduce trauma, clear field of view revealed, and allow for exploration and repair of the inferior tibiofibular anterior syndesmosis within the same incision.


Asunto(s)
Fracturas de Tobillo , Fijación Interna de Fracturas , Supinación , Humanos , Masculino , Femenino , Estudios Retrospectivos , Fijación Interna de Fracturas/métodos , Fracturas de Tobillo/cirugía , Persona de Mediana Edad , Adulto , Reducción Abierta/métodos , Resultado del Tratamiento , Curación de Fractura/fisiología , Tempo Operativo , Rango del Movimiento Articular , Rotación
14.
Eur J Pharmacol ; : 176648, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759706

RESUMEN

Opioids are used for pain relief in patients suffering from acute myocardial ischemia or infarction. Clinical and laboratory studies demonstrate that morphine treated patients or the experimental animal model suffering acute myocardial ischemia and reperfusion, may worsen myocardial viability. As transient receptor potential vanilloid 1 (TRPV1) plays important roles in pain sensation and cardio-protection, we query whether opioids may exacerbate myocardial viability via interaction with TRPV1 activity in the pain relief. We found the co-expressions of TRPV1 and opioid µ, δ and κ receptors in adult rat cardiomyocytes. Intravenous injection of morphine (0.3mg/Kg) at 20 min after induction of myocardial ischemia, in the rat model of acute myocardial ischemia and reperfusion, induced significant reduction of phosphorylated TRPV1 (p-TRPV1) in the ventricular myocardium and increase in serum cardiac troponin I (cTnI), compared with the ischemia/reperfusion controls (all P< 0.05). The effects of morphine were completely reversed by selective opioid µ, δ and κ receptor antagonists. While significant upregulation of p-TRPV1 (P<0.05) and improvement of ±dP/dt max (all P<0.05) were detected in the animals giving the same dose of morphine before induction of myocardial ischemia. The changes in p-TRPV1 correlate with the alterations of cTnI (r= -0.5840, P= 0.0283) and ±dP/dt max (r= 0.8084, P=0.0005 and r= -0.8133, P= 0.0004, respectively). The findings of this study may indicate that potentiation and attenuation of TRPV1 sensitivity correlate with the improvement of the cardiac performance and the aggravation of myocardial viability, respectively, by giving morphine before and during myocardial ischemia and reperfusion.

15.
Luminescence ; 39(5): e4763, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38761029

RESUMEN

The development of optical optics for low-location road lighting is a challenging problem in providing high luminance and uniformity of illumination and meeting many other specific requirements. This study proposes an optical design method of low-location illumination based on an asymmetric double freeform surface lens. The ray emitted from the light source is refracted and reflected through the different surface types to the corresponding area of the receiving surface. In the design example, the road has dual-side mounted luminaires and a width of 6 m, and a height of 0.8 m. Simulation results indicate that, compared with conventional high-pole streetlights, the luminance uniformity had increased from 0.60 to 0.66, the illuminance uniformity had improved from 0.75 to 0.86, and the glare had been reduced.


Asunto(s)
Iluminación , Propiedades de Superficie , Luz , Diseño de Equipo
16.
17.
Hum Cell ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691335

RESUMEN

Chimeric antigen receptor T (CART) cell therapy has demonstrated promising potential in the treatment of hematologic malignancies. However, its application to solid tumors is limited due to the restrictive nature of the tumor microenvironment, resulting in functional failure and poor persistence of CART cells. Overexpression of Bcl-2 in human CART cells (hCART) has been found to significantly enhance their anti-apoptotic effects both in vitro and in vivo. Nevertheless, the evaluation of hCART cells in preclinical studies has predominantly relied on immunodeficient mice xenograft tumor models, making it challenging to assess the impact of hCART cells on normal tissues and the immune system. We established a murine CART (mCART) that overexpresses Bcl-2 and targets the epidermal growth factor receptor variant III (EGFRvIII), named EGFRvIII·mCART-Bcl2. It demonstrated superior proliferation, cytotoxicity, and anti-apoptotic capabilities in vitro. In an immunocompetent mouse model of abdominal metastasis of colorectal cancer, EGFRvIII·mCART-Bcl2 exhibited improved survival of CART in the abdomen, increased tumor clearance, and significantly prolonged overall mouse survival. In summary, our study provides evidence that the introduction of Bcl-2 into mCART cells can enhance their therapeutic efficacy against solid tumors while ensuring safety.

18.
Heliyon ; 10(6): e27845, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38560685

RESUMEN

Objective: To study the histopathological staging of atrophic lesions of the gastric mucosa. Methods: Histology and immunohistochemistry were used to closely examine 2144 specimens of atrophic gastric mucosa that were taken from endoscopic biopsies. Results: When the gastric mucosa epithelium is affected by infection, chemical stimulation, immune factors, genetic factors, and other factors, it may cause an atrophy of gastric mucosa epithelium and a decrease in the number of glands, intestinal metaplasia, hyperplasia of smooth muscle fibers, and atrophy of stem cells in the proliferative zone. In this study, we characterized the above lesions as atrophic lesions of the gastric mucosa. Based on the morphological and histological characteristics of the lesion, as well as the law of cell proliferation and transformation during its occurrence and development, we propose five stages. We also noted the onset age, gender correlation, and histopathological characteristics of each stage of gastric mucosal atrophies. Conclusion: Understanding the pathological staging of gastric mucosal atrophy is essential for treating patients correctly and keeping track of changes in malignant cells. It is also very important in preventing the initiation of gastric cancer or from getting worse.

19.
World J Clin Cases ; 12(8): 1497-1503, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38576820

RESUMEN

BACKGROUND: Patients rarely develop complicated infections in thyroid cysts. Here, we describe a patient with chronic infected unilateral giant thyroid cyst related to diabetes mellitus (DM). CASE SUMMARY: A 66-year-old male was admitted due to an evident neck lump for 5 d after approximately 40 years of gradually progressive neck mass and 7 years of DM. Doppler ultrasound and computed tomography scan showed a giant lump in the left thyroid gland lobe. He was diagnosed with a large thyroid nodule complicated by tracheal dislocation and had surgical indications. Surgical exploration revealed evident inflammatory edema and exudation between the left anterior neck muscles, the nodule and glandular tissue. Fortunately, inflammatory lesions did not affect major neck vessels. Finally, a left partial thyroidectomy was performed. Macroscopic observation showed that the cystic thyroid mass consisted of extensive cystic wall calcification and was rich in massive rough sand-like calculi content and purulent matter. Postoperative pathology confirmed benign thyroid cyst with chronic infection. CONCLUSION: The progression of this chronic infectious unilateral giant thyroid cyst may have been related to DM, and identifying blood vessels involvement can prevent serious complications during operation.

20.
Front Bioeng Biotechnol ; 12: 1342340, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567086

RESUMEN

Orthopedic implants are the most commonly used fracture fixation devices for facilitating the growth and development of incipient bone and treating bone diseases and defects. However, most orthopedic implants suffer from various drawbacks and complications, including bacterial adhesion, poor cell proliferation, and limited resistance to corrosion. One of the major drawbacks of currently available orthopedic implants is their inadequate osseointegration at the tissue-implant interface. This leads to loosening as a result of immunological rejection, wear debris formation, low mechanical fixation, and implant-related infections. Nanotechnology holds the promise to offer a wide range of innovative technologies for use in translational orthopedic research. Nanomaterials have great potential for use in orthopedic applications due to their exceptional tribological qualities, high resistance to wear and tear, ability to maintain drug release, capacity for osseointegration, and capability to regenerate tissue. Furthermore, nanostructured materials possess the ability to mimic the features and hierarchical structure of native bones. They facilitate cell proliferation, decrease the rate of infection, and prevent biofilm formation, among other diverse functions. The emergence of nanostructured polymers, metals, ceramics, and carbon materials has enabled novel approaches in orthopaedic research. This review provides a concise overview of nanotechnology-based biomaterials utilized in orthopedics, encompassing metallic and nonmetallic nanomaterials. A further overview is provided regarding the biomedical applications of nanotechnology-based biomaterials, including their application in orthopedics for drug delivery systems and bone tissue engineering to facilitate scaffold preparation, surface modification of implantable materials to improve their osteointegration properties, and treatment of musculoskeletal infections. Hence, this review article offers a contemporary overview of the current applications of nanotechnology in orthopedic implants and bone tissue engineering, as well as its prospective future applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA