Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
ACS Appl Mater Interfaces ; 16(28): 36281-36288, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38949968

RESUMEN

Superionic halides have attracted widespread attention as solid electrolytes due to their excellent ionic conductivity, soft texture, and stability toward high-voltage electrode materials. Among them, Li3InCl6 has aroused interest since it can be easily synthesized in water or ethanol. However, investigations into the influence of solvents on both the crystal structure and properties remain unexplored. In this work, Li3InCl6 is synthesized by three different solvents: water, ethanol, and water-ethanol mixture, and the difference in properties has been studied. The results show that the product obtained by the ethanol solvent demonstrates the largest unit cell parameters with more vacancies, which tend to crystallize on the (131) plane and provide the 3D isotropic network migration for lithium-ions. Thus, it exhibits the highest ionic conductivity (1.06 mS cm-1) at room temperature and the lowest binding energy (0.272 eV). The assembled all-solid-state lithium metal batteries (ASSLMBs) employing Li3InCl6 electrolytes demonstrate a high initial discharge capacity of 153.9 mA h g-1 at 0.1 C (1 C = 170 mA h g-1) and the reversible capacity retention rate can reach 82.83% after 50 cycles. This work studies the difference in ionic conductivity between Li3InCl6 electrolytes synthesized by different solvents, which can provide a reference for the future synthesis of halide electrolytes and enable their practical application in halide-based ASSLMBs with a high energy density.

2.
Environ Res ; 259: 119517, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964585

RESUMEN

This paper aims to develop a flow-through electrochemical system with a series of graphene nanoparticles loaded PbO2 reactive electrochemical membrane electrodes (GNPs-PbO2 REMs) on porous Ti substrates with pore sizes of 100, 150, 300 and 600 µm, and apply them to treat antibiotic wastewater. Among them, the GNPs-PbO2 with Ti substrate of 150 µm (Ti-150/GNPs-PbO2) had superior electrochemical degradation performance over the REMs with other pore sizes due to its smaller crystal size, larger electrochemical active specific area, lower charge-transfer impedance and larger oxygen evolution potential. Under the relatively optimized conditions of initial pH of 5, current density of 15 mA cm-2, and membrane flux of 4.20 m3 (m2·h)-1, the Ti-150/GNPs-PbO2 REM realized 99.34% of benzylpenicillin sodium (PNG) removal with an EE/O of 6.52 kWh m-3. Its excellent performance could be explained as the increased mass transfer. Then three plausible PNG degradation pathways in the flow-through electrochemical system were proposed, and great stability and safety of Ti-150/GNPs-PbO2 REM were demonstrated. Moreover, a single-pass Ti-150/GNPs-PbO2 REM system with five-modules in series was designed, which could consistently treat real antibiotic wastewater in compliance with disposal requirements of China. Thus, this study evidenced that the flow-through electrochemical system with the Ti-150/GNPs-PbO2 REM is an efficient alternative for treating antibiotic wastewater.

3.
Front Psychol ; 15: 1416792, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39027055

RESUMEN

Background: Chinese college students predominantly use social media applications to collect information, communicate with each other, advance their education, and go shopping. Research has highlighted the spread of misinformation or fake news on social media, and this has affected college students negatively as they are the most frequent users of social media. Objective: This research aims to investigate Chinese college students' perceptions of misinformation on social media, including their views on the consequences of misinformation, insights into the reasons for its dissemination, how misinformation impacts their mental health, and their perspectives on how to control misinformation. Methods: This study followed a qualitative approach, selecting 36 participants from 12 universities in China, collecting data through semi-structured interviews, and analyzing the data to enable thematic analysis. Results: Chinese college students are aware of the adverse impact of spreading misinformation on social media. They believe that false information is disseminated primarily due to inadequate punishment for those who intentionally spread it. Most college students lack proficiency in identifying misinformation, and they expect the government to do more to control the misinformation phenomenon. Moreover, misinformation on social media may cause Chinese college students to feel dysphoric, angry, and even depressed, thereby affecting their mental health. This research indicates that the public and government should make efforts to address the misinformation phenomenon in order to protect college students from being harmed.

4.
PLoS One ; 19(7): e0306442, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38980842

RESUMEN

We aimed to determine the molecular characteristics of carbapenem-resistant Pseudomonas aeruginosa strains 18081308 and 18083286, which were isolated from the urine and the sputum of two Chinese patients, respectively. Additionally, we conducted a comparative analysis between Tn6411 carrying blaIMP-1 in strain 18083286 and transposons from the same family available in GenBank. Bacterial genome sequencing was carried out on strains 18081308 and 18083286 to obtain their whole genome sequence. Average nucleotide identity (ANI) was used for their precise species identification. Serotyping and multilocus sequence typing were performed. Furthermore, the acquired drug resistance genes of these strains were identified. The carbapenem-resistant P. aeruginosa strains isolated in the present study were of sequence type ST865 and serotype O6. They all carried the same resistance genes (aacC2, tmrB, and blaIMP-1). Tn6411, a Tn7-like transposon carrying blaIMP-1, was found in strain 18083286 by single molecule real time (SMRT) sequencing. We also identified the presence of this transposon sequence in other chromosomes of P. aeruginosa and plasmids carried by Acinetobacter spp. in GenBank, indicating the necessity for heightening attention to the potential transferability of this transposon.


Asunto(s)
Elementos Transponibles de ADN , Genómica , Pseudomonas aeruginosa , beta-Lactamasas , Pseudomonas aeruginosa/genética , Elementos Transponibles de ADN/genética , beta-Lactamasas/genética , Humanos , Genómica/métodos , Genoma Bacteriano , Infecciones por Pseudomonas/microbiología , Carbapenémicos/farmacología , Tipificación de Secuencias Multilocus , Antibacterianos/farmacología , Proteínas Bacterianas/genética
5.
Microorganisms ; 12(6)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38930458

RESUMEN

(1) Background: Antibiotic resistance in bacteria is an urgent global threat to public health. Migratory birds can acquire antibiotic-resistant and pathogenic bacteria from the environment or through contact with each other and spread them over long distances. The objectives of this study were to explore the relationship between migratory birds and the transmission of drug-resistant pathogenic Escherichia coli. (2) Methods: Faeces and swab samples from migratory birds were collected for isolating E. coli on the Inner Mongolia Plateau of northern China from 2018 to 2023. The resistant phenotypes and spectra of isolates were determined using a BD Phoenix 100 System. Conjugation assays were performed on extended-spectrum ß-lactamase (ESBL)-producing strains, and the genomes of multidrug-resistant (MDR) and ESBL-producing isolates were sequenced and analysed. (3) Results: Overall, 179 isolates were antibiotic-resistant, with 49.7% MDR and 14.0% ESBL. Plasmids were successfully transferred from 32% of ESBL-producing strains. Genome sequencing analysis of 91 MDR E. coli strains identified 57 acquired resistance genes of 13 classes, and extraintestinal pathogenic E. coli and avian pathogenic E. coli accounted for 26.4% and 9.9%, respectively. There were 52 serotypes and 54 sequence types (STs), including ST48 (4.4%), ST69 (4.4%), ST131 (2.2%) and ST10 (2.2%). The international high-risk clonal strains ST131 and ST10 primarily carried blaCTX-M-27 and blaTEM-176. (4) Conclusions: There is a high prevalence of multidrug-resistant virulent E. coli in migratory birds on the Inner Mongolian Plateau. This indicates a risk of intercontinental transmission from migratory birds to livestock and humans.

6.
Adv Mater ; : e2405097, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38876140

RESUMEN

Extensively-used rechargeable lithium-ion batteries (LIBs) face challenges in achieving high safety and long cycle life. To address such challenges, ultrathin solid polymer electrolyte (SPE) is fabricated with reduced phonon scattering by depositing the composites of ionic-liquid (1-ethyl-3-methylimidazolium dicyamide, EMIM:DCA), polyurethane (PU) and lithium salt on the polyethylene separator. The robust and flexible separator matrix not only reduces the electrolyte thickness and improves the mobility of Li+, but more importantly provides a relatively regular thermal diffusion channel for SPE and reduces the external phonon scattering. Moreover, the introduction of EMIM:DCA successfully breaks the random intermolecular attraction of the PU polymer chain and significantly decreases phonon scattering to enhance the internal thermal conductivity of the polymer. Thus, the thermal conductivity of the as-obtained SPE increases by approximately six times, and the thermal runaway (TR) of the battery is effectively inhibited. This work demonstrates that optimizing thermal safety of the battery by phonon engineering sheds a new light on the design principle for high-safety Li-ion batteries.

7.
Microorganisms ; 12(5)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38792807

RESUMEN

Gut microbes thrive by utilising host energy and, in return, provide valuable benefits, akin to a symbiotic relationship. Here, metagenomic sequencing was performed to characterise and compare the community composition, diversity and antibiotic resistance of the gut microbiota of Relict gull (Larus relictus) and Anatidae species. Alpha diversity analysis revealed that the intestinal microbial richness of L. relictus was significantly lower than that of Anatidae, with distinct differences observed in microbial composition. Notably, the intestines of L. relictus harboured more pathogenic bacteria such as clostridium, which may contribute to the decline in their population and endangered status. A total of 117 strains of Escherichia coli were isolated, with 90.60% exhibiting full susceptibility to 21 antibiotics, while 25.3% exhibited significant biofilm formation. Comprehensive Antibiotic Resistance Database data indicated that glycopeptide resistance genes were the most prevalent type carried by migratory birds, alongside quinolone, tetracycline and lincosamide resistance genes. The abundance of resistance genes carried by migratory birds decreased over time. This metagenomic analysis provides valuable insights into the intestinal microbial composition of these wild bird species, offering important guidance for their conservation efforts, particularly for L. relictus, and contributing to our understanding of pathogen spread and antibiotic-resistant bacteria.

8.
Front Plant Sci ; 15: 1371252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711601

RESUMEN

Stem diameter is a critical phenotypic parameter for maize, integral to yield prediction and lodging resistance assessment. Traditionally, the quantification of this parameter through manual measurement has been the norm, notwithstanding its tedious and laborious nature. To address these challenges, this study introduces a non-invasive field-based system utilizing depth information from RGB-D cameras to measure maize stem diameter. This technology offers a practical solution for conducting rapid and non-destructive phenotyping. Firstly, RGB images, depth images, and 3D point clouds of maize stems were captured using an RGB-D camera, and precise alignment between the RGB and depth images was achieved. Subsequently, the contours of maize stems were delineated using 2D image processing techniques, followed by the extraction of the stem's skeletal structure employing a thinning-based skeletonization algorithm. Furthermore, within the areas of interest on the maize stems, horizontal lines were constructed using points on the skeletal structure, resulting in 2D pixel coordinates at the intersections of these horizontal lines with the maize stem contours. Subsequently, a back-projection transformation from 2D pixel coordinates to 3D world coordinates was achieved by combining the depth data with the camera's intrinsic parameters. The 3D world coordinates were then precisely mapped onto the 3D point cloud using rigid transformation techniques. Finally, the maize stem diameter was sensed and determined by calculating the Euclidean distance between pairs of 3D world coordinate points. The method demonstrated a Mean Absolute Percentage Error (MAPE) of 3.01%, a Mean Absolute Error (MAE) of 0.75 mm, a Root Mean Square Error (RMSE) of 1.07 mm, and a coefficient of determination (R²) of 0.96, ensuring accurate measurement of maize stem diameter. This research not only provides a new method of precise and efficient crop phenotypic analysis but also offers theoretical knowledge for the advancement of precision agriculture.

9.
Virology ; 595: 110084, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692132

RESUMEN

Duck Tembusu virus (DTMUV) belongs to the Flaviviridae family and mainly infects ducks. The genome of DTMUV is translated into a polyprotein, which is further cleaved into several protein by viral NS2B3 protease and host proteases. Crucially, the cleavage of the NS2A/2B precursor during this process is essential for the formation of replication complexes and viral packaging. Previous research has demonstrated that alanine mutations in NS2A/2B (P1P1' (AA)) result in an attenuated strain (rDTMUV-NS2A/2B-P1P1' (AA)) by disrupting NS2A/2B cleavage. In this study, we investigate the effects of the P1P1' (AA) mutation on the viral life cycle and explore compensatory mutations in rDTMUV-NS2A/2B-P1P1' (AA). Infected ducklings exhibit similar body weight gain and viral tissue loads to DTMUV-WT. Compensatory mutations E-M349E and P1(T) emerge, restoring proliferation levels to those of rDTMUV-WT. Specifically, E-M349E enhances viral packaging, while P1(T) reinstates NS2A/2B proteolysis in vitro. Thus, our findings reveal novel compensatory sites capable of restoring the attenuated DTMUV during polyprotein cleavage and packaging.


Asunto(s)
Patos , Flavivirus , Enfermedades de las Aves de Corral , Proteínas no Estructurales Virales , Ensamble de Virus , Replicación Viral , Animales , Patos/virología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Flavivirus/genética , Flavivirus/fisiología , Enfermedades de las Aves de Corral/virología , Infecciones por Flavivirus/virología , Mutación
10.
Materials (Basel) ; 17(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38591616

RESUMEN

Nowadays, high-pressure hydrogen storage is the most commercially used technology owing to its high hydrogen purity, rapid charging/discharging of hydrogen, and low-cost manufacturing. Despite numerous reviews on hydrogen storage technologies, there is a relative scarcity of comprehensive examinations specifically focused on high-pressure gaseous hydrogen storage and its associated materials. This article systematically presents the manufacturing processes and materials used for a variety of high-pressure hydrogen storage containers, including metal cylinders, carbon fiber composite cylinders, and emerging glass material-based hydrogen storage containers. Furthermore, it introduces the relevant principles and theoretical studies, showcasing their advantages and disadvantages compared to conventional high-pressure hydrogen storage containers. Finally, this article provides an outlook on the future development of high-pressure hydrogen storage containers.

11.
Poult Sci ; 103(6): 103727, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652953

RESUMEN

Duck Tembusu virus (DTMUV) belongs to the Flaviviridae family and mainly infects ducks. Duck Tembusu virus genome encodes one polyprotein that undergoes cleavage to produce 10 proteins. Among these, NS4B, the largest transmembrane protein, plays a crucial role in the viral life cycle. In this study, we investigated the localization of NS4B and found that it is located in the endoplasmic reticulum, where it co-localizes with DTMUV dsRNA. Subsequently, we confirmed 5 different transmembrane domains of NS4B and discovered that only its transmembrane domain 3 (TMD3) can traverse ER membrane. Then mutations were introduced in the conserved amino acids of NS4B TMD3 of DTMUV replicon and infectious clone. The results showed that V111G, V117G, and I118G mutations enhanced viral RNA replication, while Q104A, T106A, A113L, M116A, H120A, Y121A, and A122G mutations reduced viral replication. Recombinant viruses with these mutations were rescued and studied in BHK21 cells. The findings demonstrated that A113L and H120A mutations led to higher viral titers than the wild-type strain, while Q104A, T106A, V111G, V117G, and Y121A mutations attenuated viral proliferation. Additionally, H120A, M116A, and A122G mutations enhanced viral proliferation. Furthermore, Q104A, T106A, V111G, M116A, V117G, Y121A, and A122G mutants showed reduced viral virulence to 10-d duck embryos. Animal experiments further indicated that all mutation viruses resulted in lower genome copy numbers in the spleen compared to the WT group 5 days postinfection. Our data provide insights into the topological model of DTMUV NS4B, highlighting the essential role of NS4B TMD3 in viral replication and proliferation.


Asunto(s)
Patos , Flavivirus , Proteínas no Estructurales Virales , Replicación Viral , Animales , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Flavivirus/fisiología , Flavivirus/genética , Enfermedades de las Aves de Corral/virología , Infecciones por Flavivirus/veterinaria , Infecciones por Flavivirus/virología , Mutación
12.
Ann Med Surg (Lond) ; 86(3): 1396-1400, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38463071

RESUMEN

Background: Patients with gallbladder cancer (GBC) generally receive gemcitabine as the standard treatment; however, its efficacy is often limited owing to the development of resistance. Methods: To identify the mechanisms underlying gemcitabine resistance in GBC, a gemcitabine-resistant GBC cell line (NOZ GemR) was established by exposing the parental NOZ cell line to increasing concentrations of gemcitabine. Morphological changes, growth rates, and migratory and invasive capabilities were evaluated. Protein expression was detected using western blotting. Results: The results demonstrated that the IC50 of NOZ and NOZ GemR was 0.011 and 4.464 µM, respectively, and that the resistance index ratio was 405.8. In comparison, NOZ GemR cells grew slower and had significantly lower migration and invasion abilities than NOZ cells. There were altered levels of epithelial-mesenchymal transformation markers in NOZ GemR cells, as well as increased levels of the Akt/mTOR pathway protein. Conclusion: The NOZ GemR cell line could be used as an effective in vitro model to improve our understanding of gemcitabine resistance in GBC.

13.
Poult Sci ; 103(5): 103585, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492247

RESUMEN

Goose astrovirus (GAstV) is a newly identified viral pathogen threatening waterfowl, exhibiting a high prevalence across various regions in China. Notably, the Guanghan District of Deyang City, situated in Sichuan Province, has faced a outbreak of GAstV, resulting in significant mortality among goslings due to the induction of gout-like symptoms. In our research, we successfully isolated a GAstV strain known as GAstV SCG3. This strain exhibits efficient replication capabilities, proving virulent in goslings and goose embryos. Our study delved into the characteristics of GAstV SCG3 both in vitro and in vivo. Additionally, we examined tissue phagocytosis and the distribution of GAstV SCG3 in deceased goslings using H&E staining and IHC techniques. According to the classification established by the ICTV, GAstV SCG3 falls under the category of GAstV genotype-2. Notably, it demonstrates the highest homology with the published AHAU5 sequences, reaching an impressive 98%. Furthermore, our findings revealed that GAstV SCG3 exhibits efficient proliferation exclusively in goose embryos and in LMH cells, while not manifesting in seven other types of avian and mammalian cells. Significantly, the mortality of GAstV on goslings and goose embryos are 93.1 and 80%, respectively. Moreover, the viral load in the livers of infected goslings surpasses that in the kidneys when compared with the attenuated strain GAstV SCG2. The mortality of GAstV is usually between 20% and 50%, our study marks the first report of a virulent GAstV strain with such a high mortality.


Asunto(s)
Infecciones por Astroviridae , Avastrovirus , Gansos , Genotipo , Enfermedades de las Aves de Corral , Animales , Gansos/virología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/mortalidad , Infecciones por Astroviridae/veterinaria , Infecciones por Astroviridae/virología , Virulencia , Avastrovirus/genética , Avastrovirus/fisiología , Avastrovirus/patogenicidad , China , Filogenia
15.
J Nanobiotechnology ; 22(1): 55, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331774

RESUMEN

BACKGROUND: Exosomes are nanoscale extracellular vesicles (30-160 nm) with endosome origin secreted by almost all types of cells, which are considered to be messengers of intercellular communication. Cancerous exosomes serve as a rich source of biomarkers for monitoring changes in cancer-related physiological status, because they carry a large number of biological macromolecules derived from parental tumors. The ultrasensitive quantification of trace amounts of cancerous exosomes is highly valuable for non-invasive early cancer diagnosis, yet it remains challenging. Herein, we developed an aptamer-carrying tetrahedral DNA (Apt-TDNA) microelectrode sensor, assisted by a polydopamine (PDA) coating with semiconducting properties, for the ultrasensitive electrochemical detection of cancer-derived exosomes. RESULTS: The stable rigid structure and orientation of Apt-TDNA ensured efficient capture of suspended exosomes. Without PDA coating signal amplification strategy, the sensor has a linear working range of 102-107 particles mL-1, with LOD of ~ 69 exosomes and ~ 42 exosomes for EIS and DPV, respectively. With PDA coating, the electrochemical signal of the microelectrode is further amplified, achieving single particle level sensitivity (~ 14 exosomes by EIS and ~ 6 exosomes by DPV). CONCLUSIONS: The proposed PDA-assisted Apt-TDNA microelectrode sensor, which integrates efficient exosome capture, sensitive electrochemical signal feedback with PDA coating signal amplification, provides a new avenue for the development of simple and sensitive electrochemical sensing techniques in non-invasive cancer diagnosis and monitoring treatment response.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Exosomas , Indoles , Neoplasias , Polímeros , Humanos , Microelectrodos , Exosomas/química , ADN/análisis , Neoplasias/diagnóstico , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Límite de Detección
16.
Comput Struct Biotechnol J ; 23: 491-505, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38249783
17.
Aging (Albany NY) ; 16(1): 246-266, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38180750

RESUMEN

The Purinergic pathway is involved in a variety of important physiological processes in living organisms, and previous studies have shown that aberrant expression of the Purinergic pathway may contribute to the development of a variety of cancers, including kidney renal clear cell carcinoma (KIRC). The aim of this study was to delve into the Purinergic pathway in KIRC and to investigate its potential significance in prognostic assessment and clinical treatment. 33 genes associated with the Purinergic pathway were selected for pan-cancer analysis. Cluster analysis, targeted drug sensitivity analysis and immune cell infiltration analysis were applied to explore the mechanism of Purinergic pathway in KIRC. Using the machine learning process, we found that combining the Lasso+survivalSVM algorithm worked well for predicting survival accuracy in KIRC. We used LASSO regression to pinpoint nine Purinergic genes closely linked to KIRC, using them to create a survival model for KIRC. ROC survival curve was analyzed, and this survival model could effectively predict the survival rate of KIRC patients in the next 5, 7 and 10 years. Further univariate and multivariate Cox regression analyses revealed that age, grading, staging, and risk scores of KIRC patients were significantly associated with their prognostic survival and were identified as independent risk factors for prognosis. The nomogram tool developed through this study can help physicians accurately assess patient prognosis and provide guidance for developing treatment plans. The results of this study may bring new ideas for optimizing the prognostic assessment and therapeutic approaches for KIRC patients.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Pronóstico , Carcinoma de Células Renales/genética , Nomogramas , Neoplasias Renales/genética , Riñón
18.
J Colloid Interface Sci ; 657: 903-912, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38091913

RESUMEN

Epoxidation of allyl chloride and hydrogen peroxide (H2O2) carried out in heterogeneous catalytic systems suffer from poor reaction efficiency due to their heavy mass transfer resistance present at the liquid-liquid interface. Pickering interfacial catalysis (PIC) provides an elegant solution by involving the design of amphiphilic heterogeneous catalysts, which can act as emulsifiers simultaneously. In this study, interface-active polyoxometalate-loaded hyper-crosslinked nanoparticles (HCNPs) were designed. The structural properties of materials were characterized in detail by elemental analysis, Zeta potential, ICP-OES, SEM, TEM, BET, FT-IR, TGA, and XPS. The prepared nanoparticles can build efficient W/O PIC systems with allyl chloride and H2O2. Systematic experiments indicate that catalysts' surface properties, catalyst dosage, and water/oil volume ratio significantly affect the PIC system's catalytic activity and emulsion properties. Moreover, this PIC system maintains high stability after the reaction and can be reused for at least 8 cycles. Excitingly, these interface-active HCNPs can also efficiently promote allyl chloride epoxidation in the absence of solvent and external stirring, illustrating that this approach holds great potential for developing catalytic systems suitable for multiphase reactions.

19.
Adv Mater ; 36(2): e2310699, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37967925

RESUMEN

Correlated single-atom catalysts (c-SACs) with tailored intersite metal-metal interactions are superior to conventional catalysts with isolated metal sites. However, precise quantification of the single-atomic interdistance (SAD) in c-SACs is not yet achieved, which is essential for a crucial understanding and remarkable improvement of the correlated metal-site-governed catalytic reaction kinetics. Here, three Ru c-SACs are fabricated with precise SAD using a planar organometallic molecular design and π-π molecule-carbon nanotube confinement. This strategy results in graded SAD from 2.4 to 9.3 Å in the Ru c-SACs, wherein tailoring the Ru SAD into 7.0 Å generates an exceptionally high turnover frequency of 17.92 H2 s-1 and a remarkable mass activity of 100.4 A mg-1 under 50 and 100 mV overpotentials, respectively, which is superior to all the Ru-based catalysts reported previously. Furthermore, density functional theory calculations confirm that Ru SAD has a negative correlation with its d-band center owing to the long-range interactions induced by distinct local atomic geometries, resulting in an appropriate electrostatic potential and the highest catalytic activity on c-SACs with 7.0 Å Ru SAD. The present study promises an attractive methodology for experimentally quantifying the metal SAD to provide valuable insights into the catalytic mechanism of c-SACs.

20.
Front Microbiol ; 14: 1301861, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143855

RESUMEN

Goose astrovirus (GAstV) is a small, non-enveloped, single-stranded, positive-sense RNA virus. GAstV has rapidly spread across various regions in China since 2016. In Sichuan, out of 113 samples were collected from goose diseases between 2019 and 2022, 97 were positive for GAstV through PCR testing. Remarkably, over the past three years, GAstV outbreak in Sichuan has accounted for an astonishing 85.8% of all goose-origin viruses. Among these cases, 63.9% had single GAstV infections, 29.9% had dual infections, and 6.2% had quadruple infections. To comprehend the variations in virulence among distinct strains of GAstV. 12 representative strains of single GAstV infections were isolated. These strains exhibited distinct characteristics, such as prominent white urate depositions in organs and joints, as well as extensive tissues phagocytosis in major target organs' tissues. The conserved ORF1b genes and the variable ORF2 genes of these representative GAstV strains were sequenced, enabling the establishment of phylogenetic trees for GAstV. All GAstV strains were identified as belonging to genotype-2 with varying internal gene sequences. Experiments were conducted on GAstV genotype-2, both in vivo and in vitro, revealed significant variations in pathogenicity and virulence across susceptible cells, embryos, and goslings. This comprehensive study enhances researchers' understanding of the transmission characteristics and virulence of GAstV genotype-2, aiding in a better comprehension of their molecular epidemiology and pathogenic mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...