RESUMEN
Previous studies have pointed to a potential link between Obstructive Sleep Apnea (OSA) and gastrointestinal diseases, suggesting that this relationship might be influenced by the presence of Metabolic Syndrome. However, the exact role of these factors in determining gastrointestinal diseases has not been thoroughly explored. In our study, we utilized data from the Genome-wide Association Studies (GWAS) database, focusing on OSA, metabolic syndrome characteristics such as Body Mass Index (BMI), waist circumference, triglycerides, cholesterol, hypertension, type 2 diabetes, and common gastrointestinal diseases including chronic gastritis, gastric ulcers, irritable bowel syndrome, colorectal cancer, inflammatory bowel disease, cholecystitis, nonalcoholic fatty liver, and dyspepsia. By applying Single-variable and Multi-variable Mendelian randomization methods, we aimed to assess the correlation between OSA and gastrointestinal diseases and investigate whether this correlation is influenced by metabolic syndrome. Our findings revealed a strong association between OSA and an increased risk of chronic gastritis, gastric ulcers, inflammatory bowel disease, and nonalcoholic fatty liver disease. No significant connections were found with irritable bowel syndrome, colorectal cancer, cholecystitis, or dyspepsia. Additionally, OSA was linked to metabolic syndrome traits like BMI, waist circumference, triglycerides, hypertension, and type 2 diabetes. Further analysis showed that BMI, triglycerides, and hypertension were causally related to inflammatory bowel disease; BMI, waist circumference, hypertension, and type 2 diabetes to nonalcoholic fatty liver disease; and triglycerides, hypertension, and type 2 diabetes to chronic gastritis. The multivariable analysis indicated that hypertension mediates the relationship between OSA and chronic gastritis; BMI, triglycerides, and hypertension mediate the link between OSA and inflammatory bowel disease; and waist circumference mediates the connection between OSA and nonalcoholic fatty liver disease. To wrap up, this finding helps us understand how these issues might be related and stresses the role of metabolic syndrome in preventing them, which could lessen their effect on health.
Asunto(s)
Enfermedades Gastrointestinales , Análisis de la Aleatorización Mendeliana , Síndrome Metabólico , Apnea Obstructiva del Sueño , Humanos , Síndrome Metabólico/genética , Síndrome Metabólico/complicaciones , Apnea Obstructiva del Sueño/genética , Apnea Obstructiva del Sueño/complicaciones , Enfermedades Gastrointestinales/genética , Enfermedades Gastrointestinales/complicaciones , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Índice de Masa Corporal , Masculino , Femenino , Polimorfismo de Nucleótido SimpleRESUMEN
As one of the important devices for large-scale electrochemical energy storage, sodium-ion batteries have received much attention due to the abundant resources of raw materials. However, whether it is a base station power source, an energy storage power station, or a start-stop power supply, long energy cycle life (more than 5000 cycles), high stability, and safety performance are application prerequisites. Regrettably, currently, few sodium-ion batteries can meet this requirement, mainly due to shortcomings in positive electrode performance. We report a sufficiently stable sodium-ion battery cathode material, Na2Fe0.95P2O7, that retains 97.5% capacity after 5000 charge/discharge cycles. The use of nonstoichiometry in the lattice enables simultaneous modification of the crystal and electronic structure, promoting Na2Fe0.95P2O7 to be extremely stable while still being able to achieve a capacity of 92 mAh g-1 and stable cycling at high temperatures up to 60 °C. Our results confirm the positive effect of nonstoichiometric ratios on the performance of Na2Fe0.95P2O7 and provide a reliable idea to promote the practical application of sodium-ion batteries.
RESUMEN
BACKGROUND: Despite the efficacy of absolute ethanol (EtOH), its radiolucency introduces several risks in interventional therapy for treating vascular malformations. This study aims to develop a novel radiopaque ethanol injection (REI) to address this issue. METHODS: Iopromide is mixed with ethanol to achieve radiopacity and improve the physicochemical properties of the solution. Overall, 82 male New Zealand white rabbits are selected for in vivo radiopacity testing, peripheral vein sclerosis [animals were divided into the following 5 groups (n = 6): negative control (NC, saline, 0.250 ml/kg), positive control (EtOH, 0.250 ml/kg), low-dose REI (L-D REI, 0.125 ml/kg), moderate-dose REI (M-D REI, 0.250 ml/kg), and high-dose REI (H-D REI 0.375 ml/kg)], pharmacokinetic analyses (the blood sample was harvested before injection, 5 min, 10 min, 20 min, 40 min, 1 h, 2 h, 4 h, and 8 h after injection in peripheral vein sclerosis experiment), peripheral artery embolization [animals were divided into the following 5 groups (n = 3): NC (saline, 0.250 ml/kg), positive control (EtOH, 0.250 ml/kg), L-D REI (0.125 ml/kg), M-D REI (0.250 ml/kg), and H-D REI (0.375 ml/kg)], kidney transcatheter arterial embolization [animals were divided into the following 4 groups (n = 3): positive control (EtOH, 0.250 ml/kg), L-D REI (0.125 ml/kg), M-D REI (0.250 ml/kg), and H-D REI (0.375 ml/kg); each healthy kidney was injected with saline as negative control], and biosafety evaluations [animals were divided into the following 5 groups (n = 3): NC (0.250 ml/kg), high-dose EtOH (0.375 ml/kg), L-D REI (0.125 ml/kg), M-D REI (0.250 ml/kg), and H-D REI (0.375 ml/kg)]. Then, a prospective cohort study involving 6 patients with peripheral venous malformations (VMs) is performed to explore the clinical safety and effectiveness of REI. From Jun 1, 2023 to August 31, 2023, 6 patients [age: (33.3 ± 17.2) years] with lingual VMs received sclerotherapy of REI and 2-month follow-up. Adverse events and serious adverse events were evaluated, whereas the efficacy of REI was determined by both the traceability of the REI under DSA throughout the entire injection and the therapeutic effect 2 months after a single injection. RESULTS: The REI contains 81.4% ethanol (v/v) and 111.3 mg/ml iodine, which can be traced throughout the injection in the animals and patients. The REI also exerts a similar effect as EtOH on peripheral venous sclerosis, peripheral arterial embolization, and renal embolization. Furthermore, the REI can be metabolized at a similar rate compared to EtOH and Ultravist® and did not cause injury to the animals' heart, liver, spleen, lungs, kidneys and brain. No REI-related adverse effects have occurred during sclerotherapy of VMs, and 4/6 patients (66.7%) have achieved complete response at follow-up. CONCLUSION: In conclusion, REI is safe, exerts therapeutic effects, and compensates for the radiolucency of EtOH in treating VMs. TRIAL REGISTRATION: The clinical trial was registered as No. ChiCTR2300071751 on May 24 2023.
Asunto(s)
Etanol , Malformaciones Vasculares , Animales , Conejos , Etanol/uso terapéutico , Etanol/farmacología , Masculino , Malformaciones Vasculares/terapia , Malformaciones Vasculares/tratamiento farmacológico , Humanos , Medios de Contraste/farmacocinética , Medios de Contraste/farmacología , Medios de Contraste/uso terapéutico , Yohexol/análogos & derivadosRESUMEN
Layered transition metal oxides are widely considered as ideal cathode materials for SIBs. However, the existing P2 and O3 structures possess specific issues, which limit their practical applications. To address these issues, this work designed a novel intergrowth layered oxide cathode with P2 and O3 phases by implementing Cu and Ti into the structure with the formation of high-entropy cathode materials with superior performance for SIBs. The electrochemical test results show that the optimized high-entropy cathode with the P2/O3 intergrowth structure possesses a high initial discharge capacity of 157.85â mAh g-1 at 0.1â C, an excellent rate performance of 84.41â mAh g-1 at 10â C, and long-term stability with capacity retention of 83.25 % after 500 cycles at 5â C. Furthermore, the analysis results of ex situ XRD and inâ situ XRD indicate that the adverse phase transition of P2-O2 under high voltage is effectively suppressed. This work indicates that the integration of high-entropy strategy with the two-phase intergrowth structure can effectively stabilize the layered structure, suppress the slipping of transition metal layers, and improve electrochemical performance, which provides a new approach for designing high-performance and practical layered transition metal oxide cathode materials for advanced SIBs.
RESUMEN
The Klebsiella pneumoniae (K. pneumoniae, Kp) populations carrying both resistance-encoding and virulence-encoding mobile genetic elements (MGEs) significantly threaten global health. In this study, we identified a new anti-CRISPR gene (acrIE10) on a conjugative plasmid with self-target sequence in K. pneumoniae with type I-E* CRISPR-Cas system. AcrIE10 interacts with the Cas7* subunit of K. pneumoniae I-E* CRISPR-Cas system. The crystal structure of the AcrIE10-KpCas7* complex suggests that AcrIE10 suppresses the I-E* CRISPR-Cas by binding directly to Cas7 to prevent its hexamerization, thereby preventing the surveillance complex assembly and crRNA loading. Bioinformatic and functional analyses revealed that AcrIE10 is functionally widespread across diverse species. Our study reports a novel anti-CRISPR and highlights its potential role in spreading resistance and virulence among pathogens.
Asunto(s)
Proteínas Bacterianas , Sistemas CRISPR-Cas , Klebsiella pneumoniae , Plásmidos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Plásmidos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Virulencia/genética , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/genéticaRESUMEN
Four new lignans named cephaliverins A-D (1-4), along with seven known analogues (5-11), were isolated from Cephalotaxus oliveri Mast. Their structures were elucidated on the basis of HR-ESI-MS and NMR analyses, and their absolute configurations were determined by ECD comparison. Cephaliverin A (1), herpetotriol (5) and hedyotol A (6) exhibited moderate antitumor activity against HepG2 and A549 cell lines.
Asunto(s)
Antineoplásicos Fitogénicos , Cephalotaxus , Lignanos , Lignanos/aislamiento & purificación , Lignanos/farmacología , Lignanos/química , Humanos , Cephalotaxus/química , Estructura Molecular , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/aislamiento & purificación , Fitoquímicos/farmacología , Fitoquímicos/aislamiento & purificación , Células Hep G2 , Células A549 , ChinaRESUMEN
The Pacific oyster Crassostrea gigas is renowned for its high zinc content, but the significant variation among individuals diminishes its value as a reliable source of zinc supplementation. The Zrt/Irt-like protein 1 (ZIP1), a pivotal zinc transporter that facilitates zinc uptake in various organisms, plays crucial roles in regulating zinc content. In the present study, polymorphisms of a ZIP1 gene in C. gigas (CgZIP1-II) were investigated, and their association with zinc content was evaluated through preliminary association analysis in 41 oysters and verification analysis in another 200 oysters. A total of 17 single nucleotide polymorphisms (SNPs) were identified in the exonic region of CgZIP1-II gene, with c.503A>G significantly associated with zinc content. Protein sequence and structure prediction showed that c.503A>G caused a p.Met110Val nonsynonymous mutation located in the metal-binding region of CgZIP1-II, which could influence its affinity for zinc ions, thereby modulating its zinc transport functionality. These results indicate the potential influence of CgZIP1-II polymorphisms on zinc content and provide candidate markers for selecting C. gigas with high zinc content.
Asunto(s)
Proteínas de Transporte de Catión , Crassostrea , Zinc , Animales , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/química , Crassostrea/genética , Crassostrea/metabolismo , Polimorfismo de Nucleótido Simple , Zinc/metabolismoRESUMEN
The Pacific oyster Crassostrea gigas is rich in taurine, which is crucial for its adaptation to the fluctuating intertidal environment and presents significant potential in improving taurine nutrition and boosting immunity in humans. Cysteine dioxygenase (CDO) is a key enzyme involved in the initial step of taurine biosynthesis and plays a crucial role in regulating taurine content in the body. In the present study, polymorphisms of CDO gene in C. gigas (CgCDO) and their association with taurine content were evaluated in 198 individuals. A total of 24 single nucleotide polymorphism (SNP) loci were identified in the exonic region of CgCDO gene by direct sequencing. Among these SNPs, c.279G>A and c.287C>A were found to be significantly associated with taurine content, with the GG and AA genotype at the two loci exhibiting enhanced taurine accumulation (p < 0.05). Haplotype analysis revealed that the 279GG/287AA haplotype had the highest taurine content of 29.24 mg/g, while the 279AA/287CC haplotype showed the lowest taurine content of 21.19 mg/g. These results indicated that the SNPs of CgCDO gene could influence the taurine content in C. gigas and have potential applications in the selective breeding of high-taurine varieties.
Asunto(s)
Crassostrea , Cisteína-Dioxigenasa , Polimorfismo de Nucleótido Simple , Taurina , Taurina/metabolismo , Crassostrea/genética , Crassostrea/metabolismo , Crassostrea/enzimología , Animales , Cisteína-Dioxigenasa/genética , Cisteína-Dioxigenasa/metabolismo , HaplotiposRESUMEN
KEY MESSAGE: Two peanut LEC1-type genes exhibit partial functional redundancy. AhNFYB10 could complement almost all the defective phenotypes of lec1-2 in terms of embryonic morphology, while AhNF-YB1 could partially affect these phenotypes. LEAFY COTYLEDON1 (LEC1) is a member of the nuclear factor Y (NF-Y) family of transcription factors and has been identified as a key regulator of embryonic development. In the present study, two LEC1-type genes from Arachis hypogeae were identified and designated as AhNF-YB1 and AhNF-YB10; these genes belong to subgenome A and subgenome B, respectively. The functions of AhNF-YB1 and AhNF-YB10 were investigated by complementation analysis of their defective phenotypes of the Arabidopsis lec1-2 mutant and by ectopic expression in wild-type Arabidopsis. The results indicated that both AhNF-YB1 and AhNF-YB10 participate in regulating embryogenesis, embryo development, and reserve deposition in cotyledons and that they have partial functional redundancy. In contrast, AhNF-YB10 complemented almost all the defective phenotypes of lec1-2 in terms of embryonic morphology and hypocotyl length, while AhNF-YB1 had only a partial effect. In addition, 30-40% of the seeds of the AhNF-YB1 transformants exhibited a decreasing germination ratio and longevity. Therefore, appropriate spatiotemporal expression of these genes is necessary for embryo morphogenesis at the early development stage and is responsible for seed maturation at the mid-late development stage. On the other hand, overexpression of AhNF-YB1 or AhNF-YB10 at the middle to late stages of Arabidopsis seed development improved the weight, oil content, and fatty acid composition of the transgenic seeds. Moreover, the expression levels of several genes associated with fatty acid synthesis and embryogenesis were significantly greater in developing AhNF-YB10-overexpressing seeds than in control seeds. This study provides a theoretical basis for breeding oilseed crops with high yields and high oil content.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arachis/genética , Arachis/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Fitomejoramiento , Ácidos Grasos/metabolismo , Desarrollo Embrionario , Lípidos , Semillas/metabolismoRESUMEN
Lead (Pb), a heavy metal environmental pollutant, poses a threat to the health of humans and birds. Inflammation is one of the most common pathological phenomena in the case of illness and poisoning. However, the underlying mechanisms of inflammation remain unclear. The cerebellum and the thalamus are important parts of the nervous system. To date, there have been no reports of Pb inducing inflammation in animal cerebellums or thalami. Selenium (Se) can relieve Pb poisoning. Therefore, we aimed to explore the mechanism by which Se alleviates Pb toxicity to the cerebellums and thalami of chickens by establishing a chicken Pb or/and Se treatment model. Our results demonstrated that exposure to Pb caused inflammatory damage in cerebellums and thalami, evidenced by the characteristics of inflammation, the decrease in anti-inflammatory factors (interleukin (IL)-2 and interferon-γ (INF-γ)), and the increase in pro-inflammatory factors (IL-4, IL-6, IL-12ß, IL-17, and nitric oxide (NO)). Moreover, we found that the IL-2/IL-17-NO pathway took part in Pb-caused inflammatory injury. The above findings were reversed by the supplementation of dietary Se, meaning that Se relieved inflammatory damage caused by Pb via the IL-2/IL-17-NO pathway. In addition, an up-regulated oxidative index malondialdehyde (MDA) and two down-regulated antioxidant indices (glutathione (GSH) and total antioxidant capacity (TAC)) were recorded after the chickens received Pb stimulation, indicating that excess Pb caused an oxidant/antioxidant imbalance and oxidative stress, and the oxidative stress mediated inflammatory damage via the GSH-IL-2 axis. Interestingly, exposure to Pb inhibited four glutathione peroxidase (GPx) family members (GPx1, GPx2, GPx3, and GPx4), three deiodinase (Dio) family members (Dio1, Dio2, and Dio3), and fifteen other selenoproteins (selenophosphate synthetase 2 (SPS2), selenoprotein (Sel)H, SelI, SelK, SelM, SelO, SelP1, SelPb, SelS, SelT, SelU, and selenoprotein (Sep)n1, Sepw1, Sepx1, and Sep15), suggesting that Pb reduced antioxidant capacity and resulted in oxidative stress involving the SPS2-GPx1-GSH pathway. Se supplementation, as expected, reversed the changes mentioned above, indicating that Se supplementation improved antioxidant capacity and mitigated oxidative stress in chickens. For the first time, we discovered that the SPS2-GPx1-GSH-IL-2/IL-17-NO pathway is involved in the complex inflammatory damage mechanism caused by Pb in chickens. In conclusion, this study demonstrated that Se relieved Pb-induced oxidative stress and inflammatory damage via the SPS2-GPx1-GSH-IL-2/IL-17-NO pathway in the chicken nervous system. This study offers novel insights into environmental pollutant-caused animal poisoning and provides a novel theoretical basis for the detoxification effect of Se against oxidative stress and inflammation caused by toxic pollutants.
RESUMEN
Four undescribed naturally diterpenolignans, and two cephalotane diterpenoids, along with seven known compounds, including two pairs of enantiomers, were isolated from the twigs and leaves of Cephalotaxus oliveri Mast. Their structures were elucidated via spectroscopic data interpretation, chiral-phase HPLC analysis, NMR calculations, and electronic circular dichroism analysis. All the isolated compounds were evaluated for their cytotoxic activities against three kinds of human tumor cell lines. Among them, compound 8 exhibited the most potent activities against MCF-7, HepG2 and A549 cell lines with IC50 values of 2.83, 4.75 and 2.77 µM, respectively.
Asunto(s)
Antineoplásicos Fitogénicos , Cephalotaxus , Diterpenos , Humanos , Cephalotaxus/química , Estructura Molecular , Diterpenos/química , Línea Celular Tumoral , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Hojas de la Planta/química , Dicroismo CircularRESUMEN
Broken cane and impurities such as top, leaf in harvested raw sugarcane significantly influence the yield of the sugar manufacturing process. It is crucial to determine the breakage and impurity ratios for assessing the quality and price of raw sugarcane in sugar refineries. However, the traditional manual sampling approach for detecting breakage and impurity ratios suffers from subjectivity, low efficiency, and result discrepancies. To address this problem, a novel approach combining an estimation model and semantic segmentation method for breakage and impurity ratios detection was developed. A machine vision-based image acquisition platform was designed, and custom image and mass datasets of cane, broken cane, top, and leaf were created. For cane, broken cane, top, and leaf, normal fitting of mean surface densities based on pixel information and measured mass was conducted. An estimation model for the mass of each class and the breakage and impurity ratios was established using the mean surface density and pixels. Furthermore, the MDSC-DeepLabv3+ model was developed to accurately and efficiently segment pixels of the four classes of objects. This model integrates improved MobileNetv2, atrous spatial pyramid pooling with deepwise separable convolution and strip pooling module, and coordinate attention mechanism to achieve high segmentation accuracy, deployability, and efficiency simultaneously. Experimental results based on the custom image and mass datasets showed that the estimation model achieved high accuracy for breakage and impurity ratios between estimated and measured value with R2 values of 0.976 and 0.968, respectively. MDSC-DeepLabv3+ outperformed the compared models with mPA and mIoU of 97.55% and 94.84%, respectively. Compared to the baseline DeepLabv3+, MDSC-DeepLabv3+ demonstrated significant improvements in mPA and mIoU and reduced Params, FLOPs, and inference time, making it suitable for deployment on edge devices and real-time inference. The average relative errors of breakage and impurity ratios between estimated and measured values were 11.3% and 6.5%, respectively. Overall, this novel approach enables high-precision, efficient, and intelligent detection of breakage and impurity ratios for raw sugarcane.
RESUMEN
Covalent organic frameworks (COFs) with tunable pore sizes and ordered structures are ideal materials for engineering nanofiltration (NF) membranes. However, most of the COFs prepared by solvothermal synthesis are unprocessable powders and fail to form well-structured membranes, which seriously hinders the development of COF NF membranes. Herein, colloidal 2D-COFs with processable membrane formation ability were synthesized by oil-in-water emulsion interfacial polymerization technology. COF NF membranes with tailored thickness and surface charge were fabricated via a layer-by-layer (LBL) assembly strategy. The prepared COF NF membrane achieved precise sieving of dye molecules with high permeance (85 L·m-2·h-1·bar-1). In this work, the strategy of prepared COF NF membranes based on colloid 2D-COF LBL assembly is proposed for the first time, which provides a new idea for the on-demand design and preparation of COF membranes for precise molecular sieving.
RESUMEN
OBJECTIVE: To evaluate the feasibility of S2 alar iliac screw insertion in Chinese children using computerized three-dimension reconstruction and simulated screw placement technique, and to optimize the measurement of screw parameters. METHODS: A total of 83 pelvic CT data of children who underwent pelvic CT scan December 2018 to December 2020 were retrospectively analyzed, excluding fractures, deformities, and tumors. There were 44 boys and 39 girls, with an average age of (10.66±3.52) years, and were divided into 4 groups based on age (group A:5 to 7 years old;group B:8 to 10 years old;group C:11-13 years old;group D:14 to 16 years old). The original CT data obtained were imported into Mimics software, and the bony structure of the pelvis was reconstructed, and the maximum and minimum cranial angles of the screws were simulated in the three-dimensional view with the placement of 6.5 mm diameter S2 alar iliac screws. Subsequently, the coronal angle, sagittal angle, transverse angle, total length of the screw, length of the screw in the sacrum, width of the iliac, and distance of the entry point from the skin were measured in 3-Matic software at the maximum and minimum head tilt angles, respectively. The differences among the screw parameters of S2 alar iliac screws in children of different ages and the differences between gender and side were compared and analyzed. RESULTS: In all 83 children, 6.5 mm diameter S2 iliac screws could be placed. There was no significant difference between the side of each screw placement parameter. The 5 to 7 years old children had a significantly smaller screw coronal angle than other age groups, but in the screw sagittal angle, the difference was more mixed. The 5 to 7 years old children could obtain a larger angle at the maximum head tilt angle of the screw, but at the minimum cranial angle, the larger angle was obtained in the age group of 11 to 13 years old. There were no significant differences among the age groups. The coronal angle and sagittal angle under maximum cephalic angle and minimum cranial angle of 5 to 7 years old male were (40.91±2.91)° and (51.85±3.75)° respectively, which were significantly greater than in female. The coronal angle under minimum cranial angle was significantly greater in girls aged 8-10 years old than in boys. For the remaining screw placement angle parameters, there were no significant differences between gender. The differences in the minimum iliac width, the screw length, and the length of the sacral screws showed an increasing trend with age in all age groups. The distance from the screw entry point to the skin in boys were significantly smaller than that of girls. The minimum width of the iliac in boys at 14 to 16 years of age were significantly wider than that in girls at the same stage. In contrast, in girls aged 5 to 7 years and 11 to 13 years, the screw length was significantly longer than that of boys at the same stage. CONCLUSION: The pelvis of children aged 5 to 16 years can safely accommodate the placement of 6.5 mm diameter S2 alar iliac screws, but the bony structures of the pelvis are developing and growing in children, precise assessment is needed to plan a reasonable screw trajectory and select the appropriate screw length.
Asunto(s)
Ilion , Fusión Vertebral , Humanos , Masculino , Femenino , Niño , Adolescente , Preescolar , Ilion/cirugía , Estudios Retrospectivos , Estudios de Factibilidad , Tornillos Óseos , Pelvis , Sacro/cirugía , Fusión Vertebral/métodosRESUMEN
Lead (Pb), a hazardous heavy metal, can damage the health of organisms. However, it is not clear whether Pb can damage chicken cerebellums and thalami. Selenium (Se), an essential nutrient for organisms, has a palliative effect on Pb poisoning in chickens. In our experiment, a model of chickens treated with Pb and Se alone and in combination was established to investigate the molecular mechanism of Se alleviating Pb-caused damage in both chicken cerebellums and thalami. Our morphological results indicated that Pb caused apoptotic lesions, such as mitochondrial and nuclear damage. Further, the anti-apoptotic gene Bcl-2 decreased; on the contrary, four pro-apoptotic genes (p53, Bax, Cyt c, and Caspase-3) increased under Pb treatment, meaning that Pb caused apoptosis via the p53-Cyt c-Caspase-3 pathway. Furthermore, we further demonstrated that Pb elevated four HSPs (HSP27, HSP40, HSP70, and HSP90), as well as HSP70 took part in the molecular mechanism of Pb-caused apoptosis. In addition, we found that Pb exposure led to oxidative stress via up-regulating the oxidant H2O2 and down-regulating four antioxidants (CAT, SOD, GST, and GPx). Moreover, Pb decreased three Se-containing factors (Txnrd1, Txnrd2, and Txnrd3), further confirming that Pb caused oxidative stress. Interestingly, Se supplementation reversed the above changes caused by Pb and alleviated Pb-induced oxidative stress and apoptosis. A time dependency was demonstrated for Bcl-2, Bax, and Cyt c in the cerebellums, as well as CAT, GPx, and p53 in the thalami of Pb-exposed chickens. HSP70 in cerebellums and HSP27 in thalami were more sensitive than those in thalami and cerebellums, respectively, under Pb exposure. Pb-induced apoptosis of thalami was more severe than cerebellums. In conclusion, after Pb treatment, Txnrds mediated oxidative stress, oxidative stress up-regulated HSPs, and finally, HSP70 triggered apoptosis. Se supplementation antagonized Pb-induced oxidative stress and apoptosis via the mitochondrial pathway and selenoproteins in chicken cerebellums and thalami. This study provides new information for the mechanism of environmental pollutant poisoning and the detoxification of Se on abiotic stress.
RESUMEN
Multidrug resistance (MDR) caused by P-glycoprotein (P-gp) is a main barrier to the success of cancer chemotherapies. In this study, fourteen novel dibenzoazepine-tetrahydroisoquinoline hybrids were prepared as potential P-gp inhibitors to surmount MDR caused by P-gp. Amongst them, 8a displayed the most potent inhibition effect on P-gp, thus effectively reversing P-gp-mediated drug resistance with a reversal fold (RF) value of 93.17 in K562/A02 cells. Excitingly, the EC50 value of 8a on MDR reversing effect was 48.74 nM, which was nearly two thousand-fold lower than its IC50 value (95.94 µM) for intrinsic cytotoxicity on K562/A02 cells. Further investigation showed that 8a exerted the MDR reversal effect through impairing P-gp function rather than affecting its expression. Molecular docking and CETSA results illustrated that 8a possessed a relatively high affinity for P-gp, thus effectively improving the stability of P-gp. Furthermore, 8a exhibited a much poorer inhibitory effect on CYP3A4 activity than CYP3A4 inhibitor ketoconazole, thus might not cause unfavorable drug-drug interactions. These data together suggested that 8a may be a promising lead to design P-gp inhibitors, and warranted further investigation on overcoming P-gp-mediated MDR.
Asunto(s)
Doxorrubicina , Tetrahidroisoquinolinas , Humanos , Células K562 , Doxorrubicina/farmacología , Simulación del Acoplamiento Molecular , Resistencia a Antineoplásicos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Tetrahidroisoquinolinas/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismoRESUMEN
The pharmacological activity of a small-molecule ligand is linked to its receptor residence time. Therefore, precise control of the duration for which a ligand binds to its receptor is highly desirable. Herein, we designed photoswitchable ligands targeting the vasopressin V2 receptor (V2R), a validated target for autosomal dominant polycystic kidney disease (ADPKD). We adapted the photoswitching trait of azobenzene to the parent V2R antagonist lixivaptan (LP) to generate azobenzene lixivaptan derivatives (aLPs). Among them, aLPs-5g was a potential optical-controlled kinetic switch. Upon irradiation, cis-aLPs-5g displayed a 4.3-fold prolonged V2R residence time compared to its thermally stable trans configuration. The optical-controlled kinetic variations led to distinct inhibitory effects on cellular functional readout. Furthermore, conversion of the cis/trans isomer of aLPs-5g resulted in different efficacies of inhibiting renal cystogenesis ex vivo and in vivo. Overall, aLPs-5g represents a photoswitch for precise control of ligand-receptor residence time and, consequently, the pharmacological activity.
Asunto(s)
Riñón Poliquístico Autosómico Dominante , Humanos , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Receptores de Vasopresinas/metabolismo , Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , Ligandos , Vasopresinas/metabolismoRESUMEN
Manganese (Mn) poisoning can happen in the case of environmental pollution and occupational exposure. However, the underlying mechanisms of Mn-induced teste toxicity and whether mitochondrion and heat shock proteins (HSPs) are involved in toxic effect of Mn on chicken testes remain poorly understood. To investigate this, MnCl2·4H2O was administered in the diet (600, 900, and 1800 mg/kg Mn) of chickens for 30, 60, and 90 days. Electron microscopy and qPCR were performed. Results showed that Mn exposure suppressed dose- and time-dependently HSP40 and HSP60 mRNA levels, meanwhile increased does-dependently HSP27, HSP70, and HSP90 mRNA levels at all three time points under three Mn exposure concentrations. Furthermore, Mn treatment damaged myoid cells, spermatocytes, and Sertoli cells through electron microscopic observation, indicating that Mn treatment damaged chicken testes. In addition, abnormal shapes of mitochondria were found, and mitochondria displayed extensive vacuolation. The increase of HSP90 and HSP70 induced by Mn exposure inhibited HSP40 and stimulated HSP27, respectively, in chicken testes, which needs further to be explored. Taken together, our study suggested that there was toxic effect in excess Mn on chickens, and HSPs and mitochondria were involved in the mechanism of dose-dependent injury caused by Mn in chicken testes. This study provided new insights for Mn toxicity identification in animal husbandry production practice.
Asunto(s)
Pollos , Intoxicación por Manganeso , Masculino , Animales , Pollos/metabolismo , Intoxicación por Manganeso/metabolismo , Testículo , Proteínas de Choque Térmico HSP27/farmacología , Proteínas de Choque Térmico/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , ARN Mensajero/metabolismoRESUMEN
Soil macropores largely control the water and nutrients transport as well as runoff processes in the soil. Biochar is frequently applied to soils to improve the macropore structure, but the effects remain controversial. To clarify depth-dependent soil macropore characteristics affected by biochar addition, the intact soil cores with a depth of 200 mm were collected from biochar-amended paddy field at addition rates of 0, 24, and 48 t ha-1 (CK, BC1, and BC2, respectively). The two biochar treatments did not change the overall soil pore indices (e.g., macroporosity, pore number, fractal dimension, and circularity), but showed distinct effects at different soil depths. At a soil depth of 0-50 mm, the biochar treatments had higher macroporosity (8.59-8.85 %) than CK (4.94 %) (p < 0.05), but relatively lower pore circularity (0.83-0.84) than CK (0.88) (p < 0.05). The connectivity of biochar treatments (88-97) was 9.5-10.4 times higher than that of CK (9.3). At a soil depth of 100-200 mm, the biochar treatments exhibited lower macroporosity, macropore number, connectivity, and fractal dimension than CK (p < 0.05). The macropore indices (except circularity) of BC1 were relatively higher than those of BC2 in the most soil depths. Whether biochar altered the soil macropore indices depended on the addition rate of biochar and soil depth. The expansion and occupying effects of biochar were dominant at soil depths of 0-50 and 100-200 mm, respectively; and the two effects were stronger in BC1 than in BC2. A combination of the expansion and occupying effects occurred at a soil depth of 50-100 mm. The distinct effects of biochar on soil pore structure at different depths could mitigate methane emission and nutrient runoff loss from the double-rice paddy. Therefore, soil depth-dependent macropore structure should be considered when assessing the influence of biochar on soil properties and the associated environmental effects.