RESUMEN
The advanced model of floral morphogenesis is based largely on data from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), but this process is less well understood in the Triticeae. Here, we investigated a sterile barley (Hordeum vulgare) mutant with malformed floral organs (designated mfo1), of which the paleae, lodicules, and stamens in each floret were all converted into lemma-like organs, and the ovary was abnormally shaped. Combining bulked-segregant analysis, whole-genome resequencing, and TILLING approaches, the mfo1 mutant was attributed to loss-of-function mutations in the MADS-box transcription factor gene HvAGL6, a key regulator in the ABCDE floral morphogenesis model. Through transcriptomic analysis between young inflorescences of wild-type and mfo1 plants, 380 genes were identified as differentially expressed, most of which function in DNA binding, protein dimerization, cell differentiation, or meristem determinacy. Regulatory pathway enrichment showed HvAGL6 associates with transcriptional abundance of many MADS-box genes, including the B-class gene HvMADS4. Mutants with deficiency in HvMADS4 exhibited the conversion of stamens into supernumerary pistils, producing multiple ovaries resembling the completely sterile multiple ovaries 3.h (mov3.h) mutant. These findings demonstrate that the regulatory model of floral morphogenesis is conserved across plant species and provides insights into the interactions between HvAGL6 and other MADS-box regulators.
RESUMEN
Hordeum is an economically and evolutionarily important genus within the Triticeae tribe of the family Poaceae, and contains 33 widely distributed and diverse species which cytologically represent four subgenomes (H, Xa, Xu and I). These wild species (except Hordeum spontaneum, which is the primary gene pool of barley) are secondary or tertiary gene-pool germplasms for barley and wheat improvement, and uncovering their complicated evolutionary relationships would benefit for future breeding programs. Here, we developed a complexity-reduced pipeline via capturing genome-wide distributed fragments via two novel target-enriched assays (HorCap v1.0 and BarPlex v1.0) in conjugation with high-throughput sequencing of the enrichments. Both assays were tested for genotyping 40 species from three genera (Hordeum, Triticum, and Aegilops) containing 82 samples 67 accessions. Either of both assays worked efficiently in genotyping, while integration of both assays can significantly improve the robustness and resolution of the Hordeum phylogenetic trees. Interestingly, the incomplete lineage sorting (ILS) was inferred for the first time as the major factor causing phylogenetic discordance among the four subgenomes, whereas in New World species (carrying I genome) post-speciation introgression events were revealed. Through revising the evolutionary relationships of the Hordeum species based on an ancestral state reconstruction for the diploids and parental donor inference for the polyploids, our results raised new queries about the Hordeum phylogeny. Moreover, both newly-developed assays are applicable in genotyping and phylogenetic analysis of Hordeum and other Triticeae wild species.
Asunto(s)
Hordeum , Filogenia , Hordeum/genética , Hordeum/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Triticum/genética , Triticum/clasificación , Genoma de Planta , Genotipo , Aegilops/genética , Aegilops/clasificación , Análisis de Secuencia de ADNRESUMEN
Tibetan weedy barleys reside at the edges of qingke (hulless barley) fields in Tibet (Xizang). The spikes of these weedy barleys contain or lack a brittle rachis, with either two- or six-rowed spikes and either hulled or hulless grains at maturity. Although the brittle rachis trait of Tibetan weedy barleys is similar to that of wild barley (Hordeum vulgare ssp. spontaneum Thell.), these plants share genetic similarity with domesticated barley. The origin of Tibetan weedy barleys continues to be debated. Here, we show that most Tibetan weedy barleys originated from cross-pollinated hybridization of domesticated barleys, followed by hybrid self-pollination and recombination between Non-brittle rachis 1 (btr1) and 2 (btr2). We discovered the specific genetic ancestry of these weedy barleys in South Asian accessions. Tibetan weedy barleys exhibit lower genetic diversity than wild and Chinese landraces/cultivars and share a close relationship with qingke, genetically differing from typical eastern and western barley populations. We classified Tibetan weedy barleys into two groups, brittle rachis (BR) and non-brittle rachis (NBR); these traits align with the haplotypes of the btr1 and btr2 genes. Whereas wild barleys carry haplotype combinations of Btr1 and Btr2, each showing lower proportions in a population, the recombinant haplotype BTR2H8+BTR1H24 is predominant in the BR group. Haplotype block analysis based on whole-genome sequencing revealed two recombination breakpoints, which are present in 80.6% and 16.8% of BR accessions according to marker-assisted analysis. Hybridization events between wild and domesticated barley were rarely detected. These findings support the notion that Tibetan weedy barleys originated via recombination between Btr1 and Btr2 in domesticated barley.
Asunto(s)
Hordeum , Recombinación Genética , Hordeum/genética , Tibet , Recombinación Genética/genética , Domesticación , Variación GenéticaRESUMEN
Induced mutations are important for genetic research and breeding. Mutations induced by physical or chemical mutagenesis are usually heterozygous during the early generations. However, mutations must be fixed prior to phenotyping or field trials, which requires additional rounds of self-pollination. Microspore culture is an effective method to produce double-haploid (DH) plants that are fixed homozygotes. In this study, we conducted ethyl methanesulfonate (EMS)-induced mutagenesis of microspore cultures of barley (Hordeum vulgare) cultivar 'Hua30' and landrace 'HTX'. The EMS concentrations were negatively correlated with the efficiency of callus induction and the frequency of mutant plant regeneration. The two genotypes showed different regeneration efficiencies. The phenotypic variation of the regenerated M1 plants and the presence of genome-wide nucleotide mutations, revealed by whole-genome sequencing, highlight the utility of EMS-induced mutagenesis of isolated microspore cultures for developing DH mutants. Genome-wide analysis of the mutation frequency in the regenerated plants revealed that a considerable proportion of mutations resulted from microspore culture (somaclonal variation) rather than EMS-induced mutagenesis. In addition to producing a population of 1972 homozygous mutant lines that are available for future field trials, this study lays the foundation for optimizing the regeneration efficiency of DH plants and the richness of mutations (mainly by fine-tuning the mutagen dosage).
RESUMEN
Soilborne pathogens destabilize the yields of Triticeae crops, including barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). Although genetic resistance derived from relatives of these species has been utilized to prevent rust diseases (i.e., in the wheat-rye 1BL-1RS translocation line), research on resistance against soilborne pathogens remains limited. Here, we performed field trials using 76 genotypes representing 28 Hordeum, six Triticum, and two Aegilops species to examine resistance against three soilborne bymoviruses: barley yellow mosaic virus (BaYMV), barley mild mosaic virus (BaMMV), and wheat yellow mosaic virus (WYMV). We also performed greenhouse tests using the soilborne fungal pathogen Fusarium pseudograminearum, which causes Fusarium crown rot (FCR). Using RT-PCR, we detected BaMMV and BaYMV in several Hordeum species, whereas WYMV induced systemic infection in the Triticum and Aegilops species. The identification of FCR susceptibility in all species examined suggests that F. pseudograminearum is a facultative fungal pathogen in Triticeae. Intraspecies variation in FCR disease severity was observed for several species, pointing to the possibility of exploring host resistance mechanisms. Therefore, by unlocking the host specificity of four soilborne pathogens in Hordeum species and their relatives, we obtained insights for the further exploration of wild sources of soilborne pathogen resistance for future wheat and barley improvement programs.
Asunto(s)
Hordeum , Hordeum/microbiología , Especificidad del Huésped , Genotipo , Triticum/microbiologíaRESUMEN
The soil-borne yellow mosaic virus disease, which is caused by the bymoviruses barley yellow mosaic virus (BaYMV) and/or barley mild mosaic virus (BaMMV), seriously threatens winter barley production in Europe and East Asia. Both viruses are transmitted by the soil-borne plasmodiophorid Polymyxa graminis and are difficult to eliminate through chemical or physical measures in the field, making breeding for resistant cultivars the optimal strategy for disease control. The resistance locus rym1/11 was cloned encoding the host factor gene Protein Disulfide Isomerase Like 5-1 (PDIL5-1), whose loss-of-function variants confer broad-spectrum resistance to multiple strains of BaMMV/BaYMV. Most resistance-conferring variants have been identified in six-rowed barley landraces/historic cultivars, and their introgression into modern two-rowed malting cultivars is difficult because PDIL5-1 is located in a peri-centromeric region with suppressed recombination. In this study, we used CRISPR/Cas9 genome editing to modify PDIL5-1 in the BaYMV/BaMMV-susceptible elite malting barley cv. 'Golden Promise' and obtained the mutants pdil5-1-a and pdil5-1-b. PDIL5-1 in the pdil5-1-a mutant encodes a protein lacking a cysteine residue, and pdil5-1-b contains a protein-coding frameshift. Both mutants were completely resistant to BaYMV. The knockout mutant pdil5-1-b showed complete BaMMV resistance, while pdil5-1-a showed decreased viral accumulation but no disease symptoms if compared to 'Golden Promise'. Both PDIL5-1 edited lines, as well as the previously produced EMS-induced pdil5-1 mutant '10253-1-5' in the elite malting barley cv. 'Barke' background, displayed no growth or yield penalties in garden experiments or bymovirus-free field trials. Line '10253-1-5' showed improved resistance and yield performance compared to the wild-type and its sibling line when grown in infectious fields. Therefore, genome editing of the host factor gene PDIL5-1 could facilitate the breeding of barley varieties with resistance to bymoviruses.
RESUMEN
Barley is a diploid species with a genome smaller than those of other members of the Triticeae tribe, making it an attractive model for genetic studies in Triticeae crops. The recent development of barley genomics has created a need for a high-throughput platform to identify genetically uniform mutants for gene function investigations. In this study, we report an ethyl methanesulfonate (EMS)-mutagenized population consisting of 8525 M3 lines in the barley landrace "Hatiexi" (HTX), which we complement with a high-quality de novo assembly of a reference genome for this genotype. The mutation rate within the population ranged from 1.51 to 4.09 mutations per megabase, depending on the treatment dosage of EMS and the mutation discrimination platform used for genotype analysis. We implemented a three-dimensional DNA pooling strategy combined with multiplexed amplicon sequencing to create a highly efficient and cost-effective TILLING (targeting induced locus lesion in genomes) platform in barley. Mutations were successfully identified from 72 mixed amplicons within a DNA pool containing 64 individual mutants and from 56 mixed amplicons within a pool containing 144 individuals. We discovered abundant allelic mutants for dozens of genes, including the barley Green Revolution contributor gene Brassinosteroid insensitive 1 (BRI1). As a proof of concept, we rapidly determined the causal gene responsible for a chlorotic mutant by following the MutMap strategy, demonstrating the value of this resource to support forward and reverse genetic studies in barley.
Asunto(s)
Hordeum , Metanosulfonato de Etilo/farmacología , Hordeum/genética , Mutagénesis , Mutación , Genética InversaRESUMEN
Plant viruses transmitted by the soilborne plasmodiophorid Polymyxa graminis constantly threaten global production of cereal crops. Although the yellow mosaic virus disease of barley has been known to be present for a long time in China, the understanding of the diversity of the viral pathogens and their interactions with host resistance remains limited. In this study, we conducted a nationwide survey of P. graminis and the barley yellow mosaic virus (BaYMV) and barley mild mosaic virus (BaMMV) it transmits, followed by genomic and pathogenic diversity analyses of both viruses. BaYMV and BaMMV were found exclusively in the region downstream of the Yangtze River, despite the national distribution of its transmission vector P. graminis. Analysis of the genomic variations of BaYMV and BaMMV revealed an elevated rate of nonsynonymous substitutions in the viral genome-linked protein (VPg), in which most substitutions were located in its interaction surface with the host eukaryotic translation initiation factor 4E (eIF4E). VPg sequence diversity was associated with the divergence in virus pathogenicity that was identified through multiple field trials. The majority of the resistance genes, including the widely applied rym4 and rym5 (alleles of eIF4E), as well as the combination of rym1/11 and rym5, are not sufficient to protect cultivated barley against viruses in China. Collectively, these results provide insights into virulence specificity and interaction mode with host resistance in cultivated barley, which has significant implications in breeding for the broad-spectrum resistance barley varieties.
Asunto(s)
Hordeum , Factor 4E Eucariótico de Iniciación/genética , Genómica , Hordeum/genética , Fitomejoramiento , Enfermedades de las Plantas , PotyviridaeRESUMEN
The WRKY transcription factors (WRKYs) are known for their crucial roles in biotic and abiotic stress responses, and developmental and physiological processes. In barley, early studies revealed their importance, whereas their diversity at the population scale remains hardly estimated. In this study, 98 HsWRKYs and 103 HvWRKYs have been identified from the reference genome of wild and cultivated barley, respectively. The tandem duplication and segmental duplication events from the cultivated barley were observed. By taking advantage of early released exome-captured sequencing datasets in 90 wild barley accessions and 137 landraces, the diversity analysis uncovered synonymous and non-synonymous variants instead of loss-of-function mutations that had occurred at all WRKYs. For majority of WRKYs, the haplotype and nucleotide diversity both decreased in cultivated barley relative to the wild population. Five WRKYs were detected to have undergone selection, among which haplotypes of WRKY9 were enriched, correlating with the geographic collection sites. Collectively, profiting from the state-of-the-art barley genomic resources, this work represented the characterization and diversity of barley WRKY transcription factors, shedding light on future deciphering of their roles in barley domestication and adaptation.
Asunto(s)
Hordeum/genética , Factores de Transcripción/genética , Aclimatación , Domesticación , Duplicación de Gen , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genoma de Planta , Genómica , Haplotipos , Filogenia , Proteínas de Plantas/genética , Estrés Fisiológico/genética , Factores de Transcripción/metabolismoRESUMEN
Glass fiber-reinforced cementitious material is one of the significant components in structural materials playing vital roles in enhancing the tensile and flexural behavior of cement-based quasi-brittle materials. Compared with carbon and polymer fibers, its intrinsic similar silicate-based composition to cement was endowed with better bonding properties and compatibility with cement-based materials. However, the poor alkali resistance of glass fibers restrained their potential development for spreading to applications in construction fields. In this study, dopamine-modified glass fibers (DP) were self-polymerized at ambient temperature by a facile method for enhancing the alkali resistance of glass fibers. Scanning electron microscopy and X-ray photoelectron spectroscopy were utilized for characterizing DP. The duration of reaction and fiber to solution ratio were adjusted with an optimal reaction time of 12 h and fiber to solution ratio of 0.12 g ml-1 acquired. Alkali resistance was measured by strength retention tests in both mortar and sodium hydroxide solution. Compared with untreated glass fibers (UN), DP exhibited a distinct improvement in strength retention rate of 37.1% and 18.9% under mortar and sodium hydroxide solution environments, respectively. Also, flexural strength tests of DP-reinforced cement were conducted, and its strength was increased in comparison with that of UN-reinforced cement by 58.2%. As a consequence, a novel simple method for improving the alkali resistance of glass fibers was proposed and is anticipated to promote the development and applications of glass-fiber reinforced cement-based materials.
RESUMEN
Heat stress (HS) causes substantial damages to worldwide crop production. As a cool season crop, wheat (Triticum aestivum) is sensitive to HS-induced damages. To support the genetic improvement of wheat HS tolerance (HST), we conducted fine mapping of TaHST1, a locus required for maintaining wheat vegetative and reproductive growth under elevated temperatures. TaHST1 was mapped to the distal terminus of 4AL chromosome arm using genetic populations derived from two BC6 F6 breeding lines showing tolerance (E6015-4T) or sensitivity (E6015-3S) to HS. The 4AL region carrying TaHST1 locus was approximately 0.949 Mbp and contained the last 19 high confidence genes of 4AL according to wheat reference genome sequence. Resequencing of E6015-3S and E6015-4T and haplotype analysis of 3087 worldwide wheat accessions revealed heightened deletion polymorphisms in the distal 0.949 Mbp region of 4AL, which was confirmed by the finding of frequent gene losses in this region in eight genome-sequenced hexaploid wheat cultivars. The great majority (86.36%) of the 3087 lines displayed different degrees of nucleotide sequence deletions, with only 13.64% of them resembling E6015-4T in this region. These deletions can impair the presence and/or function of TaHST1 and surrounding genes, thus rendering global wheat germplasm vulnerable to HS or other environmental adversities. Therefore, conscientious and urgent efforts are needed in global wheat breeding programmes to optimize the structure and function of 4AL distal terminus by ensuring the presence of TaHST1 and surrounding genes. The new information reported here will help to accelerate the ongoing global efforts in improving wheat HST.
Asunto(s)
Termotolerancia , Triticum , Brazo , Mapeo Cromosómico , Fitomejoramiento , Triticum/genéticaRESUMEN
Plant-specific TEOSINTE BRANCHED 1/CYCLOIDEA/PROLIFERATING CELL FACTORS 1/2 (TCP) transcription factors have known roles in inflorescence architecture. In barley, there are two family members INTERMEDIUM-C (INT-c/HvTB1-1) and COMPOSITUM 1 (COM1/HvTCP24) which are involved in the manipulation of spike architecture, whereas the participation of TCP family genes in selection from wild (Hordeum vulgare subsp. spontaneum, Hs) to cultivated barley (Hordeum vulgare subsp. vulgare, Hv) remains poorly investigated. Here, by conducting a genome-wide survey for TCP-like sequences in publicly-released datasets, 22 HsTCP and 20 HvTCP genes encoded for mature proteins were identified and assigned into two classes (I and II) based on their functional domains and the phylogenetic analysis. Each counterpart of the orthologous gene in wild and cultivated barley usually represented a similarity on the transcriptional profile across the tissues. The diversity analysis of TCPs in 90 wild barley accessions and 137 landraces with geographically-referenced passport information revealed the detectable selection at three loci including INT-c/HvTB1-1, HvPCF2, and HvPCF8. Especially, the HvPCF8 haplotypes in cultivated barley were found correlating with their geographical collection sites. There was no difference observed in either transactivation activity in yeast or subcellular localization in Nicotiana benthamiana among these haplotypes. Nevertheless, the genome-wide diversity analysis of barley TCP genes in wild and cultivated populations provided insight for future functional characterization in plant development such as spike architecture.
Asunto(s)
Hordeum/genética , Proteínas de Plantas/genética , Polimorfismo Genético , Selección Artificial , Factores de Transcripción/genética , Flores/genética , Flores/crecimiento & desarrollo , Haplotipos , Hordeum/crecimiento & desarrollo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Dominios Proteicos , Selección Genética , Factores de Transcripción/química , Factores de Transcripción/metabolismoRESUMEN
Bymovirus-induced yellow mosaic diseases seriously threaten global production of autumn-sown barley and wheat, which are two of the presently most important crops around the world. Under natural field conditions, the diseases are caused by infection of soil-borne plasmodiophorid Polymyxa graminis-transmitted bymoviruses of the genus Bymovirus of the family Potyviridae. Focusing on barley and wheat, this article summarizes the achievements on taxonomy, geography and host specificity of these disease-conferring viruses, as well as the genetics of resistance in barley, wheat and wild relatives. Moreover, based on recent progress of barley and wheat genomics, germplasm resources and large-scale sequencing, the exploration and isolation of corresponding resistant genes from wheat and barley as well as relatives, no matter what a large and complicated genome is present, are becoming feasible and are discussed. Furthermore, the foreseen advances on cloning of the resistance or susceptibility-encoding genes, which will provide the possibility to explore the functional interaction between host plants and soil-borne viral pathogens, are discussed as well as the benefits for marker-assisted resistance breeding in barley and wheat.
Asunto(s)
Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Hordeum/inmunología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Potyviridae/aislamiento & purificación , Triticum/inmunología , Resistencia a la Enfermedad/genética , Genoma Viral , Hordeum/genética , Hordeum/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Triticum/genética , Triticum/virologíaRESUMEN
The recycling of waste ceramic foams as fine aggregates to prepare a high strength pervious concrete (HSPC) was investigated. The as-obtained pervious concrete that was made using the waste ceramic foams presented promising results, with a high compressive strength of 36.54 MPa at 28 d and a favorable permeability of 3.8 mm s-1 compared to the traditional pervious concrete (TPC) without fine aggregates. Therefore, the dual objectives of improving the mechanical properties of pervious concrete with favorable permeability and reusing solid waste were achieved.
RESUMEN
KEY MESSAGE: A novel rare allele of the barley host factor gene eIF4E for BaMMV/BaYMV infection was identified in an Iranian landrace that showed broad resistance to barley yellow mosaic virus disease, and molecular markers facilitating efficient selection were developed. The soil-borne yellow mosaic virus disease caused by different strains of barley yellow mosaic virus (BaYMV) and barley mild mosaic virus (BaMMV) is a major threat to winter barley (Hordeum vulgare) production in Europe and East Asia. However, the exploration of resistant germplasm or casual genes for barley breeding is rather limited in relation to the rapid diversification of viral strains. Here, we identified an Iranian barley landrace 'HOR3298,' which represented complete resistance to BaYMV and BaMMV. In contrast to rym4 and rym5, which act as the predominant source in Europe and East Asia for breeding resistant cultivars over decades and which have been overcome by several virulent isolates, this landrace showed broad-spectrum resistance to multiple isolates of BaYMV/BaMMV in the fields of Germany and China. By employment of bulked segregant RNA sequencing, test for allelism, and haplotype analysis, a recessive resistance gene in 'HOR3298' was genetically mapped coincident with the host factor eukaryotic translation initiation factor 4E (eIF4E, causal gene of rym4 and rym5). The eIF4EHOR3298 allele encoded for a novel haplotype that contained an exclusive nucleotide mutation (G565A) in the coding sequence. The easily handled markers were developed based on the exclusively rare variation, providing precise selection of this allele. Thus, this work provided a novel reliable resistance source and the feasible marker-assisted selection assays that can be used in breeding for barley yellow mosaic virus disease resistance in cultivated barley.
Asunto(s)
Resistencia a la Enfermedad/genética , Factor 4E Eucariótico de Iniciación/genética , Marcadores Genéticos , Hordeum/genética , Enfermedades de las Plantas/genética , Potyviridae/patogenicidad , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hordeum/virología , Fenotipo , Enfermedades de las Plantas/virología , Potyviridae/aislamiento & purificaciónRESUMEN
Ceramic foams (CFs) are manufactured by recycling granite waste, coal gangue, and cullet. Additionally, SiC powder is used as the foaming agent. The effect of the sintering temperature, the SiC content, and the presence of additives on the pore structure as well as on the physical and mechanical properties of the CFs has been investigated. A close correlation between the sintering temperature and the pore structure of the CFs is observed. The addition of SiC at 0.5 wt% results in a substantial volume expansion of the sample and in the formation of an internal structure with uniform pores and thin pore-walls. CaO and Na2HPO4 additives allow the pores to grow and shrink and increase the uniformity, which then meets different application requirements for insulation, gardening, and in lightweight construction. We believe that the results will generalize the use of mineral waste to manufacture better ceramic products at a lower cost.
RESUMEN
In this research, we compared the discharge characteristics and catalytic efficiency of sulfuric acid, p-toluenesulfonic acid, and their respective sodium salts (sodium sulfate and sodium p-toluenesulfonate) in sawdust liquefaction and found that sulfuric acid was the optimal catalyst when glycerol was used as solvent during the plasma electrolytic liquefaction (PEL) process. When sodium p-toluenesulfonate was used as the only catalyst, the liquefaction yield reached 83.51% after 25â¯min. This yield was higher than that obtained using sodium sulfate as the catalyst (60.63%) because different concentrations of H ions were produced in PEL. Cellulose, lignin, and holocellulose were extracted from sawdust and successfully liquefied in PEL, illustrating the universality of PEL. The optical emission spectra of the different biomass during the PEL process were similar, indicating that the kinds of free radicals produced were similar, which can accelerate the liquefaction of sawdust.
Asunto(s)
Glicerol , Lignina , Ácidos , Biomasa , ElectrólisisRESUMEN
In this work, plasma electrolytic technology was successfully employed to achieve fast liquefaction of sawdust when polyethylene glycol 200 (PEG 200) and glycerol were used as liquefacient in the presence of the catalyst sulfuric acid. Results showed that H ions could heat the solution effectively during the plasma electrolytic liquefaction (PEL) process. The influence of some key parameters including liquefaction time, catalyst percentage, liquefacient/sawdust mass ratio, and PEG 200/glycerol molar ratio on the liquefaction yield were investigated. Based on the results of single factor experiments, response surface methodology (RSM) was applied to optimize the liquefaction process. Under the optimal conditions that is liquefaction time of 5.10min, catalyst percentage of 1.05%, liquefacient/sawdust mass ratio of 7.12/1 and PEG 200/glycerol molar ratio of 1.40/1, the liquefaction yield reached 99.48%. Hence, it could be concluded that PEL has good application potential for biomass fast liquefaction.