Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33558234

RESUMEN

Using a gain-of-function screen in Drosophila, we identified the Krüppel-like factor Cabut (Cbt) as a positive regulator of cell cycle gene expression and cell proliferation. Enforced cbt expression is sufficient to induce an extra cell division in the differentiating fly wing or eye, and also promotes intestinal stem cell divisions in the adult gut. Although inappropriate cell proliferation also results from forced expression of the E2f1 transcription factor or its target, Cyclin E, Cbt does not increase E2F1 or Cyclin E activity. Instead, Cbt regulates a large set of E2F1 target genes independently of E2F1, and our data suggest that Cbt acts via distinct binding sites in target gene promoters. Although Cbt was not required for cell proliferation during wing or eye development, Cbt is required for normal intestinal stem cell divisions in the midgut, which expresses E2F1 at relatively low levels. The E2F1-like functions of Cbt identify a distinct mechanism for cell cycle regulation that may be important in certain normal cell cycles, or in cells that cycle inappropriately, such as cancer cells.


Asunto(s)
Ciclo Celular/genética , Proteínas de Drosophila/metabolismo , Factores de Transcripción/metabolismo , Animales , Ojo Compuesto de los Artrópodos/citología , Ojo Compuesto de los Artrópodos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Mutación con Ganancia de Función , Prueba de Complementación Genética , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Factores de Transcripción/genética
2.
Dev Biol ; 433(2): 324-343, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29108672

RESUMEN

Understanding how somatic stem cells respond to tissue needs is important, since aberrant somatic stem cell behaviors may lead to tissue degeneration or tumorigenesis. Here, from an in vivo RNAi screen targeting transcription factors that regulate intestinal regeneration, we uncovered a requirement for the Drosophila FoxA transcription factor Fork head (Fkh) in the maintenance of intestinal stem/progenitor cell identities. FoxA/Fkh maintains the expressions of stem/progenitor cell markers and is required for stem cell proliferation during intestinal homeostasis and regeneration. Furthermore, FoxA/Fkh prevents the intestinal stem/progenitor cells from precocious differentiation into the Enterocyte lineage, likely in cooperation with the transcription factor bHLH/Daughterless (Da). In addition, loss of FoxA/Fkh suppresses the intestinal tumorigenesis caused by Notch pathway inactivation. To reveal the gene program underlying stem/progenitor cell identities, we profiled the genome-wide chromatin binding sites of transcription factors Fkh and Da, and interestingly, around half of Fkh binding regions are shared by Da, further suggesting their collaborative roles. Finally, we identified the genes associated with their shared binding regions. This comprehensive gene list may contain stem/progenitor maintenance factors functioning downstream of Fkh and Da, and would be helpful for future gene discoveries in the Drosophila intestinal stem cell lineage.


Asunto(s)
Drosophila melanogaster/fisiología , Factores de Transcripción Forkhead/fisiología , Intestinos/citología , Proteínas Nucleares/fisiología , Células Madre/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Sitios de Unión , Linaje de la Célula , Autorrenovación de las Células , Cromatina/metabolismo , Citocinas/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Enterocitos/metabolismo , Regulación de la Expresión Génica , Interferencia de ARN , Factores de Transcripción/fisiología
3.
Cell Mol Life Sci ; 73(17): 3337-49, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27137186

RESUMEN

Many adult tissues and organs are maintained by resident stem cells that are activated in response to injury but the mechanisms that regulate stem cell activity during regeneration are still poorly understood. An emerging system to study such problem is the Drosophila adult midgut. Recent studies have identified both intrinsic factors and extrinsic niche signals that control the proliferation, self-renewal, and lineage differentiation of Drosophila adult intestinal stem cells (ISCs). These findings set up the stage to interrogate how niche signals are regulated and how they are integrated with cell-intrinsic factors to control ISC activity during normal homeostasis and regeneration. Here we review the current understanding of the mechanisms that control ISC self-renewal, proliferation, and lineage differentiation in Drosophila adult midgut with a focus on the niche signaling network that governs ISC activity in response to injury.


Asunto(s)
Drosophila/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Intestinos/citología , Quinasas Janus/genética , Quinasas Janus/metabolismo , MicroARNs/metabolismo , Transducción de Señal , Células Madre/citología , Factores de Transcripción/metabolismo
4.
PLoS Genet ; 9(9): e1003835, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24086162

RESUMEN

The coordination of cell proliferation and differentiation is crucial for proper development. In particular, robust mechanisms exist to ensure that cells permanently exit the cell cycle upon terminal differentiation, and these include restraining the activities of both the E2F/DP transcription factor and Cyclin/Cdk kinases. However, the full complement of mechanisms necessary to restrain E2F/DP and Cyclin/Cdk activities in differentiating cells are not known. Here, we have performed a genetic screen in Drosophila melanogaster, designed to identify genes required for cell cycle exit. This screen utilized a PCNA-miniwhite(+) reporter that is highly E2F-responsive and results in a darker red eye color when crossed into genetic backgrounds that delay cell cycle exit. Mutation of Hsp83, the Drosophila homolog of mammalian Hsp90, results in increased E2F-dependent transcription and ectopic cell proliferation in pupal tissues at a time when neighboring wild-type cells are postmitotic. Further, these Hsp83 mutant cells have increased Cyclin/Cdk activity and accumulate proteins normally targeted for proteolysis by the anaphase-promoting complex/cyclosome (APC/C), suggesting that APC/C function is inhibited. Indeed, reducing the gene dosage of an inhibitor of Cdh1/Fzr, an activating subunit of the APC/C that is required for timely cell cycle exit, can genetically suppress the Hsp83 cell cycle exit phenotype. Based on these data, we propose that Cdh1/Fzr is a client protein of Hsp83. Our results reveal that Hsp83 plays a heretofore unappreciated role in promoting APC/C function during cell cycle exit and suggest a mechanism by which Hsp90 inhibition could promote genomic instability and carcinogenesis.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Diferenciación Celular/genética , Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factores de Transcripción E2F/metabolismo , Proteínas de Choque Térmico/genética , Ciclosoma-Complejo Promotor de la Anafase/genética , Animales , Proteínas Cdh1/genética , Proteínas Cdh1/metabolismo , Proteínas de Ciclo Celular/genética , Drosophila melanogaster/genética , Factores de Transcripción E2F/genética , Proteínas de Choque Térmico/metabolismo , Mitosis/genética , Factores de Transcripción , Complejos de Ubiquitina-Proteína Ligasa/genética
5.
Mol Cell Biol ; 33(19): 3762-79, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23878397

RESUMEN

Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptors are implicated in development and tumorigenesis and dual inhibitors like sunitinib are prescribed for cancer treatment. While mammalian VEGF and PDGF receptors are present in multiple isoforms and heterodimers, Drosophila encodes one ancestral PDGF/VEGF receptor, PVR. We identified PVR in an unbiased cell-based RNA interference (RNAi) screen of all Drosophila kinases and phosphatases for novel regulators of TORC1. PVR is essential to sustain target of rapamycin complex 1 (TORC1) and extracellular signal-regulated kinase (ERK) activity in cultured insect cells and for maximal stimulation by insulin. CG32406 (henceforth, PVRAP, for PVR adaptor protein), an Src homology 2 (SH2) domain-containing protein, binds PVR and is required for TORC1 activation. TORC1 activation by PVR involves Tsc1/Tsc2 and, in a cell-type-dependent manner, Lobe (ortholog of PRAS40). PVR is required for cell survival in vitro, and both PVR and TORC1 are necessary for hemocyte expansion in vivo. Constitutive PVR activation induces tumor-like structures that exhibit high TORC1 activity. Like its mammalian orthologs, PVR is inhibited by sunitinib, and sunitinib treatment phenocopies PVR loss in hemocytes. Sunitinib inhibits TORC1 in insect cells, and sunitinib-mediated TORC1 inhibition requires an intact Tsc1/Tsc2 complex. Sunitinib similarly inhibited TORC1 in human endothelial cells in a Tsc1/Tsc2-dependent manner. Our findings provide insight into the mechanism of action of PVR and may have implications for understanding sunitinib sensitivity and resistance in tumors.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Indoles/farmacología , Complejos Multiproteicos/metabolismo , Pirroles/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Secuencia de Aminoácidos , Animales , Antineoplásicos/farmacología , Western Blotting , Proteínas de Ciclo Celular/genética , Línea Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Hemocitos/citología , Hemocitos/efectos de los fármacos , Hemocitos/metabolismo , Humanos , Indoles/química , Indoles/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/genética , Mutación , Estructura Terciaria de Proteína , Pirroles/química , Pirroles/metabolismo , Interferencia de ARN , Proteínas Tirosina Quinasas Receptoras/química , Proteínas Tirosina Quinasas Receptoras/genética , Homología de Secuencia de Aminoácido , Sunitinib , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
6.
Cell Res ; 23(9): 1133-46, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23896988

RESUMEN

Intestinal stem cells (ISCs) in the Drosophila adult midgut are essential for maintaining tissue homeostasis, and their proliferation and differentiation speed up in order to meet the demand for replenishing the lost cells in response to injury. Several signaling pathways including JAK-STAT, EGFR and Hippo (Hpo) pathways have been implicated in damage-induced ISC proliferation, but the mechanisms that integrate these pathways have remained elusive. Here, we demonstrate that the Drosophila homolog of the oncoprotein Myc (dMyc) functions downstream of these signaling pathways to mediate their effects on ISC proliferation. dMyc expression in precursor cells is stimulated in response to tissue damage, and dMyc is essential for accelerated ISC proliferation and midgut regeneration. We show that tissue damage caused by dextran sulfate sodium feeding stimulates dMyc expression via the Hpo pathway, whereas bleomycin feeding activates dMyc through the JAK-STAT and EGFR pathways. We provide evidence that dMyc expression is transcriptionally upregulated by multiple signaling pathways, which is required for optimal ISC proliferation in response to tissue damage. We have also obtained evidence that tissue damage can upregulate dMyc expression post-transcriptionally. Finally, we show that a basal level of dMyc expression is required for ISC maintenance, proliferation and lineage differentiation during normal tissue homeostasis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Mucosa Intestinal/metabolismo , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Bleomicina/farmacología , Diferenciación Celular , Proliferación Celular , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Sulfato de Dextran/farmacología , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/efectos de los fármacos , Proteínas de Drosophila/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Proteínas Fluorescentes Verdes/genética , Intestinos/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Quinasas Janus/genética , Quinasas Janus/metabolismo , Proteínas Nucleares/efectos de los fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Receptores de Péptidos de Invertebrados/genética , Receptores de Péptidos de Invertebrados/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Transactivadores/efectos de los fármacos , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Transcripción Genética , Proteínas Señalizadoras YAP
7.
Curr Opin Genet Dev ; 22(4): 354-60, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22608824

RESUMEN

Epithelial cells of the digestive tracts of most animals are short-lived, and are constantly replenished by the progeny of long-lived, resident intestinal stem cells. Proper regulation of intestinal stem cell maintenance, proliferation and differentiation is critical for maintaining gut homeostasis. Here we review recent genetic studies of stem cell-mediated homeostatic growth in the Drosophila midgut and the mouse small intestine, highlighting similarities and differences in the mechanisms that control stem cell proliferation and differentiation.


Asunto(s)
Drosophila melanogaster/embriología , Células Madre Embrionarias/citología , Intestinos/embriología , Animales , Diferenciación Celular , Proliferación Celular , Drosophila melanogaster/citología , Intestinos/citología , Ratones
8.
Exp Cell Res ; 317(19): 2780-8, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21856297

RESUMEN

Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury.


Asunto(s)
Células Madre Adultas/fisiología , Drosophila/fisiología , Intestinos/citología , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Animales , Drosophila/genética , Drosophila/metabolismo , Homeostasis/genética , Homeostasis/fisiología , Mucosa Intestinal/metabolismo , Intestinos/fisiología , Modelos Biológicos , Receptores Notch/genética , Receptores Notch/metabolismo , Receptores Notch/fisiología , Regeneración/genética , Regeneración/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteínas Wnt/fisiología
9.
Cell Stem Cell ; 8(1): 84-95, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21167805

RESUMEN

Many tissues in higher animals undergo dynamic homeostatic growth, wherein damaged or aged cells are replaced by the progeny of resident stem cells. To maintain homeostasis, stem cells must respond to tissue needs. Here we show that in response to damage or stress in the intestinal (midgut) epithelium of adult Drosophila, multiple EGFR ligands and rhomboids (intramembrane proteases that activate some EGFR ligands) are induced, leading to the activation of EGFR signaling in intestinal stem cells (ISCs). Activation of EGFR signaling promotes ISC division and midgut epithelium regeneration, thereby maintaining tissue homeostasis. ISCs defective in EGFR signaling cannot grow or divide, are poorly maintained, and cannot support midgut epithelium regeneration after enteric infection by the bacterium Pseudomonas entomophila. Furthermore, ISC proliferation induced by Jak/Stat signaling is dependent upon EGFR signaling. Thus the EGFR/Ras/MAPK signaling pathway plays central, essential roles in ISC maintenance and the feedback system that mediates intestinal homeostasis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Receptores ErbB/metabolismo , Mucosa Intestinal/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Receptores de Péptidos de Invertebrados/metabolismo , Regeneración/fisiología , Células Madre/metabolismo , Proteínas ras/metabolismo , Animales , Animales Endogámicos , Proliferación Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Homeostasis , Mucosa Intestinal/enzimología , Mucosa Intestinal/metabolismo , Quinasas Janus/metabolismo , Células Madre/citología , Células Madre/enzimología
10.
Cell ; 137(7): 1343-55, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19563763

RESUMEN

Cells in intestinal epithelia turn over rapidly due to damage from digestion and toxins produced by the enteric microbiota. Gut homeostasis is maintained by intestinal stem cells (ISCs) that divide to replenish the intestinal epithelium, but little is known about how ISC division and differentiation are coordinated with epithelial cell loss. We show here that when enterocytes (ECs) in the Drosophila midgut are subjected to apoptosis, enteric infection, or JNK-mediated stress signaling, they produce cytokines (Upd, Upd2, and Upd3) that activate Jak/Stat signaling in ISCs, promoting their rapid division. Upd/Jak/Stat activity also promotes progenitor cell differentiation, in part by stimulating Delta/Notch signaling, and is required for differentiation in both normal and regenerating midguts. Hence, cytokine-mediated feedback enables stem cells to replace spent progeny as they are lost, thereby establishing gut homeostasis.


Asunto(s)
Drosophila/citología , Drosophila/metabolismo , Animales , Apoptosis , Citocinas/metabolismo , Drosophila/inmunología , Drosophila/microbiología , Proteínas de Drosophila/metabolismo , Enterocitos/citología , Enterocitos/metabolismo , Homeostasis , Intestinos/citología , Intestinos/microbiología , Intestinos/fisiología , Quinasas Janus/metabolismo , Regeneración , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/metabolismo
11.
Development ; 136(3): 483-93, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19141677

RESUMEN

In holometabolous insects, the adult appendages and internal organs form anew from larval progenitor cells during metamorphosis. As described here, the adult Drosophila midgut, including intestinal stem cells (ISCs), develops from adult midgut progenitor cells (AMPs) that proliferate during larval development in two phases. Dividing AMPs first disperse, but later proliferate within distinct islands, forming large cell clusters that eventually fuse during metamorphosis to make the adult midgut epithelium. We find that signaling through the EGFR/RAS/MAPK pathway is necessary and limiting for AMP proliferation. Midgut visceral muscle produces a weak EGFR ligand, Vein, which is required for early AMP proliferation. Two stronger EGFR ligands, Spitz and Keren, are expressed by the AMPs themselves and provide an additional, autocrine mitogenic stimulus to the AMPs during late larval stages.


Asunto(s)
Proliferación Celular , Proteínas de Drosophila/fisiología , Drosophila/fisiología , Receptores ErbB/fisiología , Mucosa Intestinal/citología , Intestinos/citología , Receptores de Péptidos de Invertebrados/fisiología , Células Madre Adultas/citología , Células Madre Adultas/fisiología , Animales , Linaje de la Célula/fisiología , Proteínas de Drosophila/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Mucosa Intestinal/crecimiento & desarrollo , Intestinos/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas de la Membrana/metabolismo , Metamorfosis Biológica , Neurregulinas/metabolismo , Unión Proteica , Transducción de Señal/fisiología , Proteínas ras/fisiología
12.
Physiol Genomics ; 14(1): 17-24, 2003 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-12686697

RESUMEN

Chronic exposure to environmental heat improves tolerance via heat acclimation (AC). Our previous data on mammals indicate that reprogramming the expression of genes coding for stress proteins and energy-metabolism enzymes plays a major role. Knowledge of pathways leading to AC is limited. For their identification, we established a Caenorhabditis elegans AC model and tested mutants in which signaling pathways pertinent to acclimatory responses are mutated. AC attained by maintaining adult C. elegans at 25 degrees C for 18 h enhanced heat endurance of wild-type worms subjected to heat stress (35 degrees C) and conferred protection against hypoxia and cadmium. Survival curves demonstrated that both daf-2 (insulin receptor pathway) showing enhanced heat tolerance and daf-16 loss-of-function (a transcription factor mediating DAF-2 signaling) mutants benefit from AC, suggesting that the insulin receptor pathway does not mediate AC. In contrast, the hif-1 (hypoxia inducible factor) loss-of-function strain did not show acclimation, and non-acclimated vhl-1 and egl-9 mutants (overexpressing HIF-1) had greater heat endurance than the wild type. Like mammals, HIF-1 and HSP72 levels increased in the wild-type AC nematodes. HSP72 upregulation in AC hif-1 mutants was also observed; however, it was insufficient to improve heat/stress tolerance, suggesting that HIF-1 upregulation is essential for acclimation, whereas HSP72 upregulation in the absence of HIF-1 is inadequate. We conclude that HIF-1 upregulation is both an evolutionarily conserved and a necessary component of heat acclimation. The known targets of HIF-1 imply that metabolic adaptations are essential for AC-dependent tolerance to heat and heavy metals, in addition to their known role in hypoxic adaptation.


Asunto(s)
Aclimatación/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Proteínas de Unión al ADN/fisiología , Calor , Proteínas Nucleares/fisiología , Factores de Transcripción , Aclimatación/genética , Animales , Cadmio/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica/fisiología , Genes de Helminto/genética , Genes de Helminto/fisiología , Factor 1 Inducible por Hipoxia , Metales Pesados/metabolismo , Mutación , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Fenotipo , Receptor de Insulina/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...