Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 36(8): 726-737, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29985477

RESUMEN

The neurotransmitter acetylcholine (ACh) regulates a diverse array of physiological processes throughout the body. Despite its importance, cholinergic transmission in the majority of tissues and organs remains poorly understood owing primarily to the limitations of available ACh-monitoring techniques. We developed a family of ACh sensors (GACh) based on G-protein-coupled receptors that has the sensitivity, specificity, signal-to-noise ratio, kinetics and photostability suitable for monitoring ACh signals in vitro and in vivo. GACh sensors were validated with transfection, viral and/or transgenic expression in a dozen types of neuronal and non-neuronal cells prepared from multiple animal species. In all preparations, GACh sensors selectively responded to exogenous and/or endogenous ACh with robust fluorescence signals that were captured by epifluorescence, confocal, and/or two-photon microscopy. Moreover, analysis of endogenous ACh release revealed firing-pattern-dependent release and restricted volume transmission, resolving two long-standing questions about central cholinergic transmission. Thus, GACh sensors provide a user-friendly, broadly applicable tool for monitoring cholinergic transmission underlying diverse biological processes.


Asunto(s)
Acetilcolina/metabolismo , Colorantes Fluorescentes/química , Receptores Acoplados a Proteínas G/genética , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/metabolismo , Drosophila/fisiología , Células HEK293 , Humanos , Técnicas In Vitro , Límite de Detección , Ratones , Mutagénesis Sitio-Dirigida , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Relación Señal-Ruido
2.
Elife ; 52016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28005005

RESUMEN

Reward perception guides all aspects of animal behavior. However, the relationship between the perceived value of a reward, the latent value of a reward, and the behavioral response remains unclear. Here we report that, given a choice between two sweet and chemically similar sugars-L- and D-arabinose-Drosophila melanogaster prefers D- over L- arabinose, but forms long-term memories of L-arabinose more reliably. Behavioral assays indicate that L-arabinose-generated memories require sugar receptor Gr43a, and calcium imaging and electrophysiological recordings indicate that L- and D-arabinose differentially activate Gr43a-expressing neurons. We posit that the immediate valence of a reward is not always predictive of the long-term reinforcement value of that reward, and that a subset of sugar-sensing neurons may generate distinct representations of similar sugars, allowing for rapid assessment of the salient features of various sugar rewards and generation of reward-specific behaviors. However, how sensory neurons communicate information about L-arabinose quality and concentration-features relevant for long-term memory-remains unknown.


Asunto(s)
Arabinosa/metabolismo , Proteínas de Drosophila/agonistas , Drosophila melanogaster/fisiología , Receptores de Superficie Celular/agonistas , Animales , Conducta Alimentaria , Percepción , Recompensa , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología
3.
PLoS One ; 8(2): e57129, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23437330

RESUMEN

The central complex of Drosophila melanogaster plays important functions in various behaviors, such as visual and olfactory memory, visual orientation, sleep, and movement control. However little is known about the genes regulating the development of the central complex. Here we report that a mutant gene affecting central complex morphology, cbd (central brain defect), was mapped to ten-a, a type II trans-membrane protein coding gene. Down-regulation of ten-a in pan-neural cells contributed to abnormal morphology of central complex. Over-expression of ten-a by C767-Gal4 was able to partially restore the abnormal central complex morphology in the cbd mutant. Tracking the development of FB primordia revealed that C767-Gal4 labeled interhemispheric junction that separated fan-shaped body precursors at larval stage withdrew to allow the fusion of the precursors. While the C767-Gal4 labeled structure did not withdraw properly and detached from FB primordia, the two fan-shaped body precursors failed to fuse in the cbd mutant. We propose that the withdrawal of C767-Gal4 labeled structure is related to the formation of the fan-shaped body. Our result revealed the function of ten-a in central brain development, and possible cellular mechanism underlying Drosophila fan-shaped body formation.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Receptores de Superficie Celular/genética , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Encéfalo/embriología , Encéfalo/metabolismo , Mapeo Cromosómico , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Expresión Génica , Orden Génico , Morfogénesis/genética , Mutación , Fenotipo , Interferencia de ARN , Receptores de Superficie Celular/metabolismo
4.
Cell ; 148(3): 515-29, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22284910

RESUMEN

A long-standing question in the study of long-term memory is how a memory trace persists for years when the proteins that initiated the process turn over and disappear within days. Previously, we postulated that self-sustaining amyloidogenic oligomers of cytoplasmic polyadenylation element-binding protein (CPEB) provide a mechanism for the maintenance of activity-dependent synaptic changes and, thus, the persistence of memory. Here, we found that the Drosophila CPEB Orb2 forms amyloid-like oligomers, and oligomers are enriched in the synaptic membrane fraction. Of the two protein isoforms of Orb2, the amyloid-like oligomer formation is dependent on the Orb2A form. A point mutation in the prion-like domain of Orb2A, which reduced amyloid-like oligomerization of Orb2, did not interfere with learning or memory persisting up to 24 hr. However the mutant flies failed to stabilize memory beyond 48 hr. These results support the idea that amyloid-like oligomers of neuronal CPEB are critical for the persistence of long-term memory.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/fisiología , Factores de Transcripción/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Secuencia de Aminoácidos , Amiloide/metabolismo , Animales , Aplysia/metabolismo , Encéfalo/metabolismo , Proteínas de Drosophila/química , Memoria , Datos de Secuencia Molecular , Neuronas/metabolismo , Mutación Puntual , Isoformas de Proteínas/metabolismo , Sinapsis/metabolismo , Factores de Transcripción/química , Factores de Escisión y Poliadenilación de ARNm/química
5.
Protein Cell ; 2(3): 215-22, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21461680

RESUMEN

The fruit fly, Drosophila melanogaster, is able to discriminate visual landmarks and form visual long-term memory in a flight simulator. Studies focused on the molecular mechanism of long-term memory have shown that memory formation requires mRNA transcription and protein synthesis. However, little is known about the molecular mechanisms underlying the visual learning paradigm. The present study demonstrated that both spaced training procedure (STP) and consecutive training procedure (CTP) would induce long-term memory at 12 hour after training, and STP caused significantly higher 12-h memory scores compared with CTP. Label-free quantification of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and microarray were utilized to analyze proteomic and transcriptomic differences between the STP and CTP groups. Proteomic analysis revealed 30 up-regulated and 27 down-regulated proteins; Transcriptomic analysis revealed 145 up-regulated and 129 down-regulated genes. Among them, five candidate genes were verified by quantitative PCR, which revealed results similar to microarray. These results provide insight into the molecular components influencing visual long-term memory and facilitate further studies on the roles of identified genes in memory formation.


Asunto(s)
Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Perfilación de la Expresión Génica/métodos , Memoria/fisiología , Proteómica/métodos , Visión Ocular/fisiología , Animales , Condicionamiento Psicológico/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Vuelo Animal/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Tiempo
6.
Nitric Oxide ; 24(1): 17-24, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20932929

RESUMEN

Nitric oxide (NO) plays an important role in learning and memory which is essential for animals to adapt to the external environment. However, little is known about the role of NO metabolism in this process. S-nitrosoglutathione reductase (GSNOR) is a key protein in the control of NO metabolism and protein S-nitrosation. To study the relationship between NO metabolism and learning and memory, the expression of gene fdh which is homolog to mammalian GSNOR was modulated by the Gal4/UAS system in Drosophila. The over-expression of the fdh in the central nervous system significantly increased GSNOR activity and induced visual pattern memory defects of Drosophila. The role of fdh in learning and memory was independent of development and was neuron-specific: over-expression of the fdh in the fan-shaped body induced memory defect, while over-expression in the mushroom body did not. The visual pattern memory defect could be rescued by co-expression with exogenous cGMP-dependent protein kinase (PKG). Moreover, fdh over-expression resulted in denitrosation of multiple proteins functionally enriched in vesicle-mediated transport, which is important for learning and memory. These results showed that regulation of NO metabolism plays an important role in learning and memory, and the mechanism may involve both NO-cGMP-PKG signaling pathway and S-nitrosation modification.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Drosophila melanogaster/fisiología , Memoria/fisiología , Óxido Nítrico/metabolismo , Reconocimiento Visual de Modelos/fisiología , Aldehído Oxidorreductasas/genética , Animales , Animales Modificados Genéticamente , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Redes y Vías Metabólicas , Nitrosación
7.
Learn Mem ; 15(3): 133-42, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18310460

RESUMEN

The role of the foraging (for) gene, which encodes a cyclic guanosine-3',5'-monophosphate (cGMP)-dependent protein kinase (PKG), in food-search behavior in Drosophila has been intensively studied. However, its functions in other complex behaviors have not been well-characterized. Here, we show experimentally in Drosophila that the for gene is required in the operant visual learning paradigm. Visual pattern memory was normal in a natural variant rover (for(R)) but was impaired in another natural variant sitter (for(S)), which has a lower PKG level. Memory defects in for(S) flies could be rescued by either constitutive or adult-limited expression of for in the fan-shaped body. Interestingly, we showed that such rescue also occurred when for was expressed in the ellipsoid body. Additionally, expression of for in the fifth layer of the fan-shaped body restored sufficient memory for the pattern parameter "elevation" but not for "contour orientation," whereas expression of for in the ellipsoid body restored sufficient memory for both parameters. Our study defines a Drosophila model for further understanding the role of cGMP-PKG signaling in associative learning/memory and the neural circuit underlying this for-dependent visual pattern memory.


Asunto(s)
Condicionamiento Operante/fisiología , Proteínas Quinasas Dependientes de GMP Cíclico/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/enzimología , Memoria a Corto Plazo/fisiología , Proteínas del Tejido Nervioso/fisiología , Reconocimiento Visual de Modelos/fisiología , Alelos , Animales , Animales Modificados Genéticamente , Encéfalo/enzimología , Encéfalo/ultraestructura , Proteínas Quinasas Dependientes de GMP Cíclico/deficiencia , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Biblioteca de Genes , Isoenzimas/genética , Isoenzimas/fisiología , Mutagénesis Insercional , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas Recombinantes de Fusión/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...