Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Anim Reprod Sci ; 263: 107448, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428346

RESUMEN

The egg production of captive African penguins differs considerably between individuals. An understanding of the physiological differences in African penguins with relatively greater and lesser egg production is meaningful for the captive breeding program of this endangered species. The objective of this study was to investigate differential microbial composition and metabolites in captive African penguins with different egg production. Fecal samples were collected from captive female African penguins during the breeding season. The results of 16 S rRNA gene sequencing showed that African penguins with different egg production had similar microbial diversities, whereas a significant difference was observed between their microbial community structure. African penguins with relatively greater egg production exhibited a higher relative abundance of Alphaproteobacteria, Rhizobiales, Bradyrhizobiaceae, Bradyrhizobium and Bosea. Meanwhile, penguins with relatively lesser egg production had an increased proportion of Klebsiella and Plesiomonas. We further identified a total of 1858 metabolites in female African penguins by liquid chromatography-mass spectrometry analysis. Among these metabolites, 13 kinds of metabolites were found to be significantly differential between African penguins with different egg production. In addition, the correlation analysis revealed that the egg production had significant correlations with most of the differential microbial bacteria and metabolites. Our findings might aid in understanding the potential mechanism underlying the phenomenon of abnormal egg production in captive African penguins, and provide novel insights into the relationship between gut microbiota and reproduction in penguins.


Asunto(s)
Microbioma Gastrointestinal , Spheniscidae , Humanos , Femenino , Animales , Spheniscidae/fisiología , Microbioma Gastrointestinal/genética , Estaciones del Año
2.
Animals (Basel) ; 13(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37443905

RESUMEN

An understanding of the microbial communities in African penguins (Spheniscus demersus) could provide valuable information for saving this endangered species. The objective of this study was to investigate the composition, diversity and sex-related differences in the intestinal microbiota of captive African penguins. Fecal samples were collected from 21 captive adult African penguins reared in the same conditions at Shanghai Zoo. The results show that Proteobacteria, Actinobacteria and Firmicutes were the predominant bacteria in the intestinal microbiota of the captive African penguins. No difference was found in microbial diversity between female and male African penguins, as shown by their similar alpha and beta diversities. However, a notable sex-related difference was found between their microbial compositions. Female African penguins have a higher abundance of Pseudomonas and a lower abundance of Kocuria than males. A functional prediction indicates that the "mRNA surveillance pathway", "Polyketide sugar unit biosynthesis", "Wnt signaling pathway", "Lysosome" and "Cell cycle" pathways were significantly enriched in the microbiota of female African penguins. In conclusion, the present study indicates that the compositions and predicted functions of the intestinal microbiota are significantly different between the sexes. Our data suggest that the intestinal microbiota of female African penguins are more unstable than the intestinal microbiota of males in captivity.

3.
Animals (Basel) ; 13(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37106837

RESUMEN

The objective of this study was to investigate the impact of Lycopene and L-Carnitine, individually or in combination, on various physiological and molecular factors related to intestinal health and absorption ability in Roosters, such as intestinal morphology, serum biochemical parameters, genes involved in Lycopene uptake, nutritional transport genes, and tight junction genes. The findings of the study revealed that the combination of L-Carnitine and Lycopene supplementation had been found to increase the serum concentration levels of TP and ALB. Interestingly, the relative mRNA expression of genes responsible for Lycopene uptakes, such as SR-BI and BCO2, was higher in the LC group compared to other groups. Additionally, the expression of specific nutritional transport genes in the duodenum was significantly affected by both CAR and LC supplementation groups. The tight junction gene OCLN showed a significant increase in expression in the combination group compared to using either Lycopene or L-Carnitine alone. This study concludes that using Lycopene and L-carnitine in combination in poultry feed can potentially improve intestinal morphology and serum biochemical parameters, increase Lycopene bioavailability, improve nutrients uptake, and enhance the integrity of duodenal tight junctions in Roosters.

4.
Anim Nutr ; 10: 329-346, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35919247

RESUMEN

The intestinal immune function of chickens is limited during the early growing stage. Maternal nutritional intervention has been suggested to affect the innate immunity of offspring. The present study aimed to investigate the effects of maternal stevioside supplementation on the intestinal immune function of chicken offspring. A total of 120 Jinmao yellow-feathered breeder hens were fed a basal diet or a diet supplemented with 250 mg/kg stevioside for 5 weeks. During the last week, 200 breeding eggs from each group were collected for incubation. After hatching, 80 male offspring (40 chickens from each group) were randomly selected and fed the same basal diet for 28 d. In addition, 90 well-shaped fertile eggs of non-treated breeder hens were incubated for the in ovo injection experiment. Steviol dissolved in 20% glycerol was injected at 7 d of incubation. The results showed that maternal stevioside supplementation could improve embryonic development, jejunal integrity and proliferation in the jejunal crypt (P < 0.05). Maternal stevioside supplementation could also increase the innate transcription levels of cytokines and endotoxin tolerance-related factors in the jejunum of chicken offspring (P < 0.05). At 28 d of age, the offspring following maternal stevioside supplementation exhibited higher jejunal secretory immunoglobulin A and serum interferons levels (P < 0.05). A higher abundance of Lactobacillales induced by maternal stevioside supplementation was positively correlated with intestinal immune-related factors (P < 0.05). The in ovo injection with steviol did not alter either embryonic development or intestinal immune function of hatching chickens (P > 0.05). Furthermore, maternal stevioside supplementation could induce hypo-methylation on the promoter region of suppressor of cytokine signaling 1 (SOCS1). In conclusion, maternal stevioside supplementation could improve the intestinal immune function of chicken offspring potentially via modulating the gut microbiota and down-regulating the promoter methylation level of SOCS1.

5.
J Nutr Biochem ; 104: 108973, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35196574

RESUMEN

Intra-uterine growth restriction (IUGR) is a serious, commonly occurring reproductive problem in humans. This study aimed to investigate the effects of daily curcumin supplementation during pregnancy on placental inflammation, in a rat model of IUGR. Pregnant rats were divided into three groups based on diet: (1) normal protein (19%) (NP), (2) low protein (8%) (LP), and (3) low protein + 100 mg curcumin/kg bw per day (LPC). The results showed that curcumin accumulation in the serum, placenta and liver. Fetal weight and placental total protein levels were increased in the LPC group compared with those in the LP group. Dietary curcumin supplementation normalized the low protein diet-induced decrease of placental weight, blood sinusoid area, and proliferating cell nuclear antigen (PCNA) protein expression levels. It also reversed the low protein diet-induced increase of serum triglyceride levels and tumor necrosis factor alpha-like (TNF-α), interleukin 1 beta (IL-1ß), and interleukin 6 (IL-6) concentrations in both the placenta and serum. Additionally, it normalized the enhanced gene expression levels of the pro-inflammatory cytokines in the LP group to that in the NP group. Furthermore, it downregulated the inhibitor of kappa Balpha (IκBα) and nuclear factor kappa Balpha (NF-κB) phosphorylation. In conclusion, daily curcumin supplementation ameliorates placental inflammation in rats with IUGR by inhibiting the NF-κB signaling pathway.


Asunto(s)
Curcumina , Animales , Curcumina/farmacología , Suplementos Dietéticos , Femenino , Retardo del Crecimiento Fetal , Humanos , Inflamación/tratamiento farmacológico , FN-kappa B/metabolismo , Placenta/metabolismo , Embarazo , Ratas , Transducción de Señal , Factor de Necrosis Tumoral alfa/farmacología
6.
Eur J Nutr ; 61(4): 1875-1892, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35059786

RESUMEN

PURPOSE: The present study investigated whether maternal curcumin supplementation might protect against intra-uterine growth retardation (IUGR) induced intestinal damage and modulate gut microbiota in male mice offspring. METHODS: In total, 36 C57BL/6 mice (24 females and 12 males, 6-8 weeks old) were randomly divided into three groups based on the diet before and throughout pregnancy and lactation: (1) normal protein (19%), (2) low protein (8%), and (3) low protein (8%) + 600 mg kg-1 curcumin. Offspring were administered a control diet until postnatal day 35. RESULTS: Maternal curcumin supplementation could normalize the maternal protein deficiency-induced decrease in jejunal SOD activity (NP = 200.40 ± 10.58 U/mg protein; LP = 153.30 ± 5.51 U/mg protein; LPC = 185.40 ± 9.52 U/mg protein; P < 0.05) and T-AOC content (NP = 138.90 ± 17.51 U/mg protein; LP = 84.53 ± 5.42 U/mg protein; LPC = 99.73 ± 12.88 U/mg protein; P < 0.05) in the mice offspring. Maternal curcumin supplementation increased the maternal low protein diet-induced decline in the ratio of villus height-to-crypt depth (NP = 2.23 ± 0.19; LP = 1.90 ± 0.06; LPC = 2.56 ± 0.20; P < 0.05), the number of goblet cells (NP = 12.72 ± 1.16; LP = 7.04 ± 0.53; LPC = 13.10 ± 1.17; P < 0.05), and the ratio of PCNA-positive cells (NP = 13.59 ± 1.13%; LP = 2.42 ± 0.74%; LPC = 6.90 ± 0.96%; P < 0.05). It also reversed the maternal protein deficiency-induced increase of the body weight (NP = 13.00 ± 0.48 g; LP = 16.49 ± 0.75 g; LPC = 10.65 ± 1.12 g; P < 0.05), the serum glucose levels (NP = 5.32 ± 0.28 mmol/L; LP = 6.82 ± 0.33 mmol/L; LPC = 4.69 ± 0.35 mmol/L; P < 0.05), and the jejunal apoptotic index (NP = 6.50 ± 1.58%; LP = 10.65 ± 0.75%; LPC = 5.24 ± 0.71%; P < 0.05). Additionally, maternal curcumin supplementation enhanced the gene expression level of Nrf2 (NP = 1.00 ± 0.12; LP = 0.73 ± 0.10; LPC = 1.34 ± 0.12; P < 0.05), Sod2 (NP = 1.00 ± 0.04; LP = 0.85 ± 0.04; LPC = 1.04 ± 0.04; P < 0.05) and Ocln (NP = 1.00 ± 0.09; LP = 0.94 ± 0.10; LPC = 1.47 ± 0.09; P < 0.05) in the jejunum. Furthermore, maternal curcumin supplementation normalized the relative abundance of Lactobacillus (NP = 31.56 ± 6.19%; LP = 7.60 ± 2.33%; LPC = 17.79 ± 2.41%; P < 0.05) and Desulfovibrio (NP = 3.63 ± 0.93%; LP = 20.73 ± 3.96%; LPC = 13.96 ± 4.23%; P < 0.05), and the ratio of Firmicutes/Bacteroidota (NP = 2.84 ± 0.64; LP = 1.21 ± 0.30; LPC = 1.79 ± 0.15; P < 0.05). Moreover, Lactobacillus was positively correlated with the SOD activity, and it was negatively correlated with Il - 1ß expression (P < 0.05). Desulfovibrio was negatively correlated with the SOD activity and the jejunal expression of Sod1, Bcl - 2, Card11, and Zo - 1 (P < 0.05). CONCLUSIONS: Maternal curcumin supplementation could improve intestinal integrity, oxidative status, and gut microbiota in male mice offspring with IUGR.


Asunto(s)
Curcumina , Microbioma Gastrointestinal , Deficiencia de Proteína , Animales , Femenino , Humanos , Masculino , Ratones , Embarazo , Curcumina/farmacología , Dieta con Restricción de Proteínas , Suplementos Dietéticos , Retardo del Crecimiento Fetal , Ratones Endogámicos C57BL , Superóxido Dismutasa
7.
J Anim Physiol Anim Nutr (Berl) ; 106(6): 1321-1332, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34741341

RESUMEN

Mulberry-leaf flavonoids (MF), extracted from mulberry leaves, exert antioxidant and hypolipidemic effects. The purpose of this experimental study was to investigate the effects of dietary MF on the ovarian function and liver lipid metabolism of aged breeder hens. We used 270 (60-weeks-old) Qiling breeder hens randomly assigned in 3 treatments with supplemental dietary MF doses (0, 30, 60 mg/kg). The results showed that dietary MF significantly improved the egg-laying rate, followed by the reduced feed conversion rate (FCR) (p < 0.05). However, there is no obvious difference in hatchability and fertilised eggs hatchability among the three groups (p > 0.05). The level of T-CHO, LDL-C and AKP in serum was reduced, and the HDL-C concentrations were increased by dietary MF (p < 0.05). MF treatment also improved the antioxidant capacity and reduced the apoptotic index of the ovary (p < 0.05). Additionally, dietary MF significantly increased the serum estradiol (E2) levels (p < 0.05) and the transcription level of CYP19A1 and LHR in the ovary (p < 0.05). Dietary MF enhanced fatty acid ß-oxidation in the liver via up-regulating the mRNA expressions of PPARα and CPT-I (p < 0.05). Moreover, the HMF group significantly decreased mRNA expressions of SREBP-1c (p < 0.05) and increased mRNA expressions of ERα, VTG-Ⅱ and ApoB in the liver (p < 0.05). In conclusion, dietary MF could improve the reproduction performance of aged breeder hens through improving ovary function and hepatic lipid metabolism.


Asunto(s)
Morus , Animales , Femenino , Alimentación Animal/análisis , Pollos/fisiología , Metabolismo de los Lípidos , Flavonoides/farmacología , Antioxidantes/metabolismo , Dieta , Óvulo , Hígado/metabolismo , Hojas de la Planta/metabolismo , Suplementos Dietéticos/análisis , ARN Mensajero/metabolismo
8.
Theriogenology ; 179: 177-186, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34883395

RESUMEN

Eggshell quality is subject to a significant decline in the late laying period, which results in huge economic losses. The purpose of this study was to investigate the effects of dietary mulberry-leaf flavonoids (MF) on the eggshell quality of aged breeder hens. A total of 270 (60-week-old) Qiling breeder hens were randomly assigned to 3 treatments with supplemental dietary MF doses (0, 30, and 60 mg/kg). The results showed that dietary MF improved the eggshell thickness and strength, following the reduced broken egg ratio (P < 0.05). Histological analysis showed that dietary MF increased glandular density and luminal epithelium height in the shell gland (P < 0.05). MF treatment reduced the apoptotic index of the shell gland, following by improved antioxidant capacity (P < 0.05). The protein expression of Caspase 3 was down-regulated, and Nrf2 was up-regulated by dietary MF (P < 0.05). Furthermore, calcium (Ca) content in the serum and shell gland, as well as the activity of Ca2+-ATPase in the shell gland were increased by dietary MF (P < 0.05). Ca transport-related genes (ESRα, ESRß, KCNA1, OPN, CABP-28K and CDH6) in the shell gland were upregulated by dietary MF treatment (P < 0.05). In conclusion, dietary MF could ameliorate the eggshell quality of aged hens by improving antioxidative capability and Ca deposition in the shell gland of uterus.


Asunto(s)
Cáscara de Huevo , Morus , Alimentación Animal/análisis , Animales , Pollos , Dieta/veterinaria , Suplementos Dietéticos/análisis , Hojas de la Planta , Polifenoles
9.
Poult Sci ; 100(12): 101499, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34731736

RESUMEN

Hawthorn-leaves flavonoids (HF), extracted from hawthorn leaves, were reported to exert antioxidant, anti-inflammatory and hypolipidemic properties. The aim of our study was to investigate the effects of dietary HF on the reproduction performance and liver lipid metabolism of aged breeder hens. A total of 270 aged Qiling breeder hens (60-wk-old) were randomly divided into 3 treatments: 1) basic corn-soybean diet (CON); 2) basic corn-soybean diet supplemented with 30 mg/kg HF (LHF); 3) basic corn-soybean diet supplemented with 60 mg/kg HF (HHF). The results showed that supplemented HF significantly improved the egg-laying rate and hatching rate of aged breeder hens (P < 0.05). HF treatment reduced the serum TG, T-CHO and L-LDL levels (P < 0.05), and upregulated the mRNA expressions of ESR1, ESR2, VTGⅡ, ApoB, and ApoVI in the liver (P < 0.05). Serum estrogen levels in HF treated groups were elevated compared with the CON group (P < 0.05). In the HHF group, the number of the primordial follicles was higher in comparison with the CON group (P < 0.05). Furthermore, dietary supplementation with HF improved the activity of antioxidant enzymes (T-AOC, GSH-Pχ) (P < 0.05), following with the reversed ovarian apoptosis and morphological damage. In addition, 60 mg/kg dietary HF upregulated the protein expression of PCNA and Nrf2 in the ovary (P < 0.05). In summary, dietary supplementation with HF could improve the reproduction performance through regulating liver lipid metabolism and improving ovarian function in aged breeder hens.


Asunto(s)
Alimentación Animal , Crataegus , Flavonoides/administración & dosificación , Metabolismo de los Lípidos , Ovario/fisiología , Alimentación Animal/análisis , Animales , Pollos , Crataegus/química , Dieta/veterinaria , Suplementos Dietéticos/análisis , Femenino , Hígado/metabolismo , Hojas de la Planta/química , Reproducción
10.
Food Funct ; 12(13): 6014-6028, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34036963

RESUMEN

Our previous study showed that dietary stevioside supplementation could alleviate intestinal mucosal damage induced by lipopolysaccharide (LPS) through its anti-inflammatory and antioxidant effects in broiler chickens. However, it remains unknown whether feeding stevioside to breeder hens could exert similar biological functions in their offspring. The present study aimed to investigate whether maternal dietary stevioside supplementation could prevent LPS-induced intestinal mucosal damage and alteration of gut microbiota in chicken offspring. A total of 120 Jinmao yellow-feathered breeder hens were fed a basal diet (CON) or a 250 mg kg-1 stevioside-supplemented diet (STE) for 5 weeks before collecting their eggs. After hatching, 160 male offspring (80 chickens from each group) were randomly selected and divided into four treatment groups: (1) the offspring of hens fed a basal diet (CON); (2) the offspring of hens fed a stevioside-supplemented diet (STE); (3) the CON group challenged with LPS (LPS); and (4) the STE group challenged with LPS (LSTE). The results showed that maternal stevioside supplementation increased the hatching weight and improved the intestinal morphology. LPS challenge significantly decreased the terminal body weight and the concentrations of serum triglyceride (TG) and glucose (GLU) of the chicken offspring. Maternal stevioside supplementation protected against LPS-induced morphological damage, goblet cell impairment, intestinal apoptosis, and gene expression alteration. In addition, sequence analysis of 16S rRNA gene showed that maternal stevioside supplementation could prevent the impairment of bacterial diversity in LPS-challenged chicken offspring. Moreover, the increased abundance of Lactobacillus caused by maternal stevioside supplementation had a significant negative correlation with the expression of intestinal inflammatory cytokines. In conclusion, maternal stevioside supplementation could ameliorate intestinal mucosal damage and modulate gut microbiota in chicken offspring challenged with LPS.


Asunto(s)
Alimentación Animal , Pollos , Diterpenos de Tipo Kaurano/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Glucósidos/farmacología , Mucosa Intestinal/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Citocinas/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mucosa Intestinal/patología , Intestinos/efectos de los fármacos , Lipopolisacáridos/efectos adversos , Masculino , ARN Ribosómico 16S/metabolismo
11.
J Sci Food Agric ; 101(5): 2156-2167, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32981085

RESUMEN

BACKGROUND: Stevioside (STE) is a widely used sweetener. Despite the fact that chickens are insensitive to sweetness, dietary STE supplementation could increase the feed intake of broiler chickens. Stevioside might regulate the feeding behavior through functional mechanisms other than its high-potency sweetness. The present study was aimed to elucidate the potential sweetness-independent mechanism of an STE-induced orexigenic effect using the broiler chicken and considering the hypothalamic transcriptome profile and gut microbiome. RESULTS: The analysis of RNA-Seq identified 398 differently expressed genes (160 up-regulated and 238 down-regulated) in the hypothalamus of the STE-supplemented group compared with the control group. Cluster analysis revealed several appetite-related genes were differentially expressed, including NPY, NPY5R, TSHB, NMU, TPH2, and DDC. The analysis of 16S rRNA sequencing data also indicated that dietary STE supplementation increased the relative abundance of Lactobacillales, Bacilli, Lactobacillus, and Lactobacillaceae. Meanwhile, the proportion of Ruminococcaceae, Lachnospiraceae, Clostridia, and Clostridiales was decreased after dietary supplementation with STE. CONCLUSION: Dietary STE supplementation promoted feed intake through the regulation of the hypothalamic neuroactive ligand-receptor interaction pathway and the alteration of intestinal microbiota composition. This study provides valuable information about the sweetness-independent mechanism of the STE-induced orexigenic effect using the broiler chicken (which is insensitive to sweetness) as the animal model. © 2020 Society of Chemical Industry.


Asunto(s)
Pollos/microbiología , Diterpenos de Tipo Kaurano/metabolismo , Microbioma Gastrointestinal , Glucósidos/metabolismo , Hipotálamo/metabolismo , Alimentación Animal/análisis , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Pollos/genética , Pollos/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Ingestión de Alimentos , Conducta Alimentaria , Femenino , Masculino , Transcriptoma
12.
Endocrinology ; 162(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33367902

RESUMEN

Taste receptors are not only expressed in the taste buds, but also in other nongustatory tissues, including the reproductive system. Taste receptors can be activated by various tastants, thereby exerting relatively physiologic functions. The aim of this study was to investigate the effects and potential mechanisms underlying ovarian taste receptor activation on progesterone production using saccharin sodium as the receptor agonist in a pseudopregnant rat model. Taste 1 receptor member 2 (TAS1R2) and taste 2 receptor member 31 (TAS2R31) were demonstrated to be abundantly expressed in the corpora lutea of rats, and intraperitoneal injection of saccharin sodium can activate both of them and initiate their downstream signaling cascades. The activation of these ovarian taste receptors promoted nitric oxide (NO) production via endothelial nitric oxide synthase (eNOS). NO production then increased ovarian cyclic guanosine 3',5'-monophosphate (cGMP) levels, which, in turn, decreased ovarian cyclic adenosine 3',5'-monophosphate levels. In addition, the activation of ovarian taste receptors induced apoptosis, possibly through NO and mitogen-activated protein kinase signaling. As a result, the activation of ovarian taste receptors reduced the protein expression of steroidogenesis-related factors, causing the inhibition of ovarian progesterone production. In summary, our data suggest that the activation of ovarian taste receptors inhibits progesterone production in pseudopregnant rats, potentially via NO/cGMP and apoptotic signaling.


Asunto(s)
Ovario/efectos de los fármacos , Progesterona/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Sacarina/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , GMP Cíclico/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Femenino , Óxido Nítrico/metabolismo , Ovario/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
13.
Poult Sci ; 99(8): 3948-3958, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32731982

RESUMEN

The objective of this study was to investigate the effects of dietary 3 kinds of sweeteners supplementation on growth performance, serum biochemicals, and jejunal physiological functions of broiler chickens for 21 D. A total of one hundred ninety-two 1-day-old male Ross 308 broiler chicks were randomly divided into 4 treatments with 6 replicates for each treatment. The treatments were basal diet (CON), a basal diet supplemented with 250 mg/kg stevioside (STE), a basal diet supplemented with 100 mg/kg sucralose (SUC), and a basal diet supplemented with 600 mg/kg saccharin sodium (SAC). All birds were housed in 3-level battery cages. The results showed that dietary STE supplementation increased (P < 0.05) growth performance, serum total protein, serum albumin, and jejunal antioxidant capacity of broiler chickens. Both SUC and SAC supplementation decreased (P < 0.05) serum total protein and albumin. Dietary SAC supplementation impaired the intestinal integrity, permeability, and mucus layer of the jejunum in broiler chickens. In addition, SAC supplementation elevated (P < 0.05) the transcription expression level of jejunal bitter taste receptors and induced excessive jejunal apoptosis. Our data suggest that STE could be potentially applied as a growth-promoting and antioxidant feed additive in broiler chickens. Whereas, dietary supplementation with high level SAC has side-effects on the jejunal physiological functions of broiler chickens.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Pollos , Suplementos Dietéticos , Yeyuno , Edulcorantes , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Pollos/sangre , Pollos/crecimiento & desarrollo , Dieta/veterinaria , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Masculino , Edulcorantes/farmacología
14.
Antioxidants (Basel) ; 9(2)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024207

RESUMEN

Pregnancy complications are associated with oxidative stress induced by accumulation of trophoblastic ROS in the placenta. We employed the human trophoblast HTR8/SVneo cell line to determine the effect of curcumin pre-treatment on H2O2-induced oxidative damage in HTR8/Sveo cells. Cells were pretreated with 2.5 or 5 µM curcumin for 24 h, and then incubated with 400 µM H2O2 for another 24 h. The results showed that H2O2 decreased the cell viability and induced excessive accumulation of reactive oxygen species (ROS) in HTR8/Sveo cells. Curcumin pre-treatment effectively protected HTR8/SVneo cells against oxidative stress-induced apoptosis via increasing Bcl-2/Bax ratio and decreasing the protein expression level of cleaved-caspase 3. Moreover, curcumin pre-treatment alleviated the excessive oxidative stress by enhancing the activity of antioxidative enzymes. The antioxidant effect of curcumin was achieved by activating Nrf2 and its downstream antioxidant proteins. In addition, knockdown of Nrf2 by Nrf2-siRNA transfection abolished the protective effects of curcumin on HTR8/SVneo cells against oxidative damage. Taken together, our results show that curcumin could protect HTR8/SVneo cells from H2O2-induced oxidative stress by activating Nrf2 signaling pathway.

15.
Biol Reprod ; 102(5): 1090-1101, 2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31930336

RESUMEN

Intrauterine growth retardation (IUGR) is a serious reproductive problem in humans. The objective of this study was to investigate the effects of daily maternal curcumin supplementation during pregnancy on placental function and fetal growth in a mouse model of IUGR fed the low-protein (LP) diet. Pregnant mice were divided into four groups: (1) normal protein (19% protein) diet (NP); (2) LP (8% protein) diet; (3) LP diet + 100 mg/kg curcumin (LPL); (4) LP diet +400 mg/kg curcumin (LPH). The results showed that the LP group decreased fetal weight, placental weight, placental efficiency, serum progesterone level, placental glutathione peroxidase activity activity, blood sinusoids area, and antioxidant gene expression of placenta. In addition, in comparison with the NP group, LP diet increased serum corticosterone level, placental malondialdehyde content, and apoptotic index. Daily curcumin administration decreased the placental apoptosis, while it increased placental efficiency, placental redox balance, blood sinusoids area, and antioxidant-related protein expression in fetal liver. The antioxidant gene expression of placenta and fetal liver was normalized to the NP level after curcumin administration. In conclusion, daily curcumin supplementation could improve maternal placental function and fetal growth in mice with IUGR.


Asunto(s)
Curcumina/farmacología , Desarrollo Fetal/efectos de los fármacos , Retardo del Crecimiento Fetal/tratamiento farmacológico , Placenta/efectos de los fármacos , Animales , Antiinflamatorios no Esteroideos/farmacología , Apoptosis/efectos de los fármacos , Curcumina/administración & dosificación , Dieta con Restricción de Proteínas/efectos adversos , Suplementos Dietéticos , Femenino , Retardo del Crecimiento Fetal/inducido químicamente , Feto/efectos de los fármacos , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos ICR , Estrés Oxidativo , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
J Agric Food Chem ; 67(49): 13737-13750, 2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31789024

RESUMEN

Genistein is abundant in animal feed. In this study, the side effects of high-dose genistein on intestinal health and hypothalamic RNA profile were evaluated. Chicks exposed to high-dose genistein by intraperitoneal injection (416 ± 21, 34.5 ± 2.5) and feed supplementation (308 ± 19, 27.2 ± 2.1) both showed a reduced body weight gain and feed intake in comparison with the control group (261 ± 16, 22.7 ± 1.6, P < 0.01). In comparison with the control (22.4 ± 0.5, 33.3 ± 2.4), serum levels of albumin and total protein were decreased after high-dose genistein injection (21.6 ± 0.5, 31.8 ± 1.6) and diet supplementation (20.6 ± 0.9, 29.9 ± 2.5, P < 0.001). Interestingly, the genistein diet presented the chick hypothalamus with downregulated expression of bitter receptors (TAS1R3, P < 0.05). Meanwhile, it upregulated the expressions of TAS2R1 (P < 0.05) and downstream genes (PLCB2 and IP3R3) in the ileum (P < 0.05). Accordingly, high-dose dietary genistein reduced villus height and the abundance of Lactobacillus, along with the increased abundance of pathogenic bacteria in the ileum (P < 0.05). Furthermore, transcriptomic analysis identified 348 differently expressed genes (168 upregulated and 224 downregulated) in the high-dose dietary genistein treated group in comparison with the control (P < 0.05, |log2FoldChange| > 0.585). Therefore, high-dose dietary genistein altered the hypothalamic RNA profile and signal processing. Cluster analysis further revealed that high-dose dietary genistein significantly influenced apoptosis, the immune process, and the whole synthesis of steroid hormones in the hypothalamus (P < 0.05). In conclusion, high-dose dietary genistein altered the hypothalamic RNA profile and intestinal health of female chicks.


Asunto(s)
Pollos/metabolismo , Suplementos Dietéticos/efectos adversos , Genisteína/efectos adversos , Hipotálamo/metabolismo , ARN/genética , Alimentación Animal/efectos adversos , Alimentación Animal/análisis , Animales , Peso Corporal/efectos de los fármacos , Pollos/genética , Pollos/crecimiento & desarrollo , Pollos/inmunología , Ingestión de Alimentos/efectos de los fármacos , Femenino , Genisteína/análisis , Hipotálamo/efectos de los fármacos , Íleon/efectos de los fármacos , Íleon/metabolismo , ARN/metabolismo , Esteroides/metabolismo
17.
Oxid Med Cell Longev ; 2019: 3829342, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31885785

RESUMEN

Little information has been available about the influence of dietary genistein (GEN) on hepatic transcriptome of laying broiler breeder (LBB) hens. The study is aimed at broadening the understanding of RNA expression profiles and alternative splicing (AS) signatures of GEN-treated breeder hens and thereby improving laying performance and immune function of hens during the late egg-laying period. 720 LBB hens were randomly allocated into three groups with supplemental dietary GEN doses (0, 40 mg/kg, and 400 mg/kg). Each treatment has 8 replicates of 30 birds. Dietary GEN enhanced the antioxidative capability of livers, along with the increased activities of glutathione peroxidase and catalase. Furthermore, it improved lipid metabolic status and apoptotic process in the liver of hens. 40 mg/kg dietary GEN had the better effects on improving immune function and laying performance. However, transcriptome data indicated that 400 mg/kg dietary GEN did negative regulation of hormone biosynthetic process. Also, it upregulated the expressions of EDA2R and CYR61 by the Cis regulation of neighbouring genes (lncRNA_XLOC_018890 and XLOC_024242), which might activate NF-κB and immune-related signaling pathway. Furthermore, dietary GEN induced AS events in the liver, which also enriched into immune and metabolic process. Therefore, the application of 40 mg/kg GEN in the diet of breeder hens during the late egg-laying period can improve lipid metabolism and immune function. We need to pay attention to the side-effects of high-dose GEN on the immune function.


Asunto(s)
Empalme Alternativo/efectos de los fármacos , Genisteína/farmacología , Hígado/efectos de los fármacos , ARN/metabolismo , Transcriptoma/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Pollos , Proteína 61 Rica en Cisteína/genética , Proteína 61 Rica en Cisteína/metabolismo , Suplementos Dietéticos , Hígado/metabolismo , ARN Largo no Codificante/metabolismo , Triglicéridos/sangre , Receptor Xedar/genética , Receptor Xedar/metabolismo
18.
Antioxidants (Basel) ; 8(12)2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31766443

RESUMEN

The study was conducted to investigate the effects of dietary stevioside (STE) supplementation on the lipopolysaccharide (LPS)-induced intestinal mucosal damage of broiler chickens. A total of 192 one-day-old male Ross 308 broiler chicks were randomly divided into four treatments: (1) basal diet (CON); (2) basal diet supplemented with 250 mg/kg stevioside (STE); (3) basal diet + LPS-challenge (LPS); (4) basal diet supplemented with 250 mg/kg stevioside + LPS-challenge (LPS + STE). LPS-challenged groups received an intraperitoneal injection of LPS at 17, 19 and 21 d, whereas the CON and STE groups received a saline injection. The results showed that dietary STE supplementation normalized LPS-induced changes in protein expression of p-NF-κB and p-IκBα, mRNA expression of inflammatory genes (TLR4, NF-κB, and IFN-γ), tight junction-related genes (CLDN2, OCLN, and ZO-1), and antioxidant genes (Nrf2 and HO-1). LPS-induced decreases in serum diamine oxidase (DAO) level, villus height-to-crypt depth ratio, apoptotic index, and protein expression of proliferating cell nuclear antigen (PCNA) were reversed with dietary STE supplementation. Additionally, STE supplementation ameliorated the redox damage by reducing malondialdehyde (MDA) content and increasing total antioxidant capacity (T-AOC) and antioxidant enzyme activity. In conclusion, dietary stevioside supplementation could alleviate LPS-induced intestinal mucosal damage through anti-inflammatory and antioxidant effects in broiler chickens.

19.
Reprod Biol ; 19(3): 230-236, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31399370

RESUMEN

Saccharine sodium and rebaudioside A are low-calorie sweeteners, and the biologic effects of these sweeteners in rat ovaries are related to the activity of sweet taste receptors. Data on the impact and regulatory mechanisms underlying such sweeteners on the reproduction of aged animals are currently lacking. In the present study we assessed how the consumption of sweeteners affects the ovarian cycle, ovulation, biochemical indices, and other biologic functions. Thirty-six 1-year-old mice were randomly divided into 3 groups: a control (C) group receiving regular water, a saccharin sodium group receiving a 7.5 mM solution, and the rebaudioside A group receiving a 2.5 mM solution for 30 days. We observed no significant changes in body weights in any group. However, uterine weight in the rebaudioside A group significantly increased in diestrus, and we recorded a significant increase in the percentage of abnormal estrous cycles and the number of corpora lutea in the treatment groups. TUNEL staining and Immunoreactivity for the apoptosis-inducing factor (AIF) confirmed apoptosis in granulosa cells, oocyte, and corpus luteum. Serum glucose increased significantly in both treatment groups and there was a significant increase in cholesterol in the rebaudioside A group. Furthermore, the saccharin sodium-treated group exhibited elevated serum progesterone levels compared with the other groups. In conclusion, sweeteners manifested deleterious effects on reproductive indices in aged mice.


Asunto(s)
Envejecimiento/fisiología , Diterpenos de Tipo Kaurano/farmacología , Ovario/efectos de los fármacos , Receptores Acoplados a Proteínas G/agonistas , Sacarina/farmacología , Animales , Diterpenos de Tipo Kaurano/administración & dosificación , Ciclo Estral/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Progesterona/sangre , Distribución Aleatoria , Sacarina/administración & dosificación
20.
Animals (Basel) ; 9(8)2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390726

RESUMEN

The present study was conducted to investigate the responsiveness expressions of ggTas2Rs against denatonium benzoate (DB) and genistein (GEN) in several organs of the Chinese Fast Yellow Chicken. A total of 300 one-day-old chicks that weighed an average of 32 g were randomly allocated into five groups with five replicates for 56 consecutive days. The dietary treatments consisted of basal diet, denatonium benzoate (5 mg/kg, 20 mg/kg, and 100 mg/kg), and genistein 25 mg/kg. The results of qRT-PCR indicated significantly (p < 0.05) high-level expressions in the heart, spleen, and lungs in the starter and grower stages except for in bursa Fabricius. The responsiveness expressions of ggTas2Rs against DB 100 mg/kg and GEN 25 mg/kg were highly dose-dependent in the heart, spleen, lungs, and kidneys in the starter and grower stages, but dose-independent in the bursa Fabricius in the finisher stage. The ggTas2Rs were highly expressed in lungs and the spleen, but lower in the bursa Fabricius among the organs. However, the organ growth performance significantly (p < 0.05) increased in the groups administered DB 5 mg/kg and GEN 25 mg/kg; meanwhile, the DB 20 mg/kg and DB 100 mg/kg treatments significantly reduced the growth of all the organs, respectively. These findings indicate that responsiveness expressions are dose-dependent, and bitterness sensitivity consequently decreases in aged chickens. Therefore, these findings may improve the production of new feedstuffs for chickens according to their growing stages.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA