RESUMEN
Microgravity can induce alterations in liver morphology, structure, and function, with mitochondria playing an important role in these changes. Tail suspension (TS) is a well-established model for simulating the effects of microgravity on muscles and bones, but its impact on liver function remains unclear. In the current study, we explored the regulatory mechanisms of apoptosis, autophagy, fission, and fusion in maintaining liver mitochondrial homeostasis in mice subjected to TS for 2 or 4 weeks (TS2 and TS4). The results showed the following: (1) No significant differences were observed in nuclear ultrastructure or DNA fragmentation between the control and TS-treated groups. (2) No significant differences were detected in the mitochondrial area ratio among the three groups. (3) Cysteine aspartic acid-specific protease 3 (Caspase3) activity and the Bcl-2-associated X protein (bax)/B-cell lymphoma-2 (bcl2) ratio were not higher in the TS2 and TS4 groups compared to the control group. (4) dynamin-related protein 1 (DRP1) protein expression was increased, while mitochondrial fission factor (MFF) protein levels were decreased in the TS2 and TS4 groups compared to the control, suggesting stable mitochondrial fission. (5) No significant differences were observed in the optic atrophy 1 (OPA1), mitofusin 1 and 2 (MFN1 and MFN2) protein expression levels across the three groups. (6) Mitochondrial autophagy vesicles were present in the TS2 and TS4 groups, with a significant increase in Parkin phosphorylation corresponding to the duration of the TS treatment. (7) ATP synthase and citrate synthase activities were significantly elevated in the TS2 group compared to the control group but were significantly reduced in the TS4 group compared to the TS2 group. In summary, the coordinated regulation of apoptosis, mitochondrial fission and fusion, and particularly mitochondrial autophagy preserved mitochondrial morphology and contributed to the restoration of the activities of these two key mitochondrial enzymes, thereby maintaining liver mitochondrial homeostasis in mice under TS conditions.
Asunto(s)
Apoptosis , Autofagia , Homeostasis , Dinámicas Mitocondriales , Animales , Ratones , Suspensión Trasera , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Masculino , Dinaminas/metabolismo , Dinaminas/genéticaRESUMEN
BACKGROUND: Hepatocellular carcinoma (HCC) is a major cause of cancer mortality worldwide, and metastasis is the main cause of early recurrence and poor prognosis. However, the mechanism of metastasis remains poorly understood. AIM: To determine the possible mechanism affecting HCC metastasis and provide a possible theoretical basis for HCC treatment. METHODS: The candidate molecule lecithin-cholesterol acyltransferase (LCAT) was screened by gene microarray and bioinformatics analysis. The expression levels of LCAT in clinical cohort samples was detected by quantitative real-time polymerase chain reaction and western blotting. The proliferation, migration, invasion and tumor-forming ability were measured by Cell Counting Kit-8, Transwell cell migration, invasion, and clonal formation assays, respectively. Tumor formation was detected in nude mice after LCAT gene knockdown or overexpression. The immunohistochemistry for Ki67, E-cadherin, N-cadherin, matrix metalloproteinase 9 and vascular endothelial growth factor were performed in liver tissues to assess the effect of LCAT on HCC. Gene set enrichment analysis (GSEA) on various gene signatures were analyzed with GSEA version 3.0. Three machine-learning algorithms (random forest, support vector machine, and logistic regression) were applied to predict HCC metastasis in The Cancer Genome Atlas and GEO databases. RESULTS: LCAT was identified as a novel gene relating to HCC metastasis by using gene microarray in HCC tissues. LCAT was significantly downregulated in HCC tissues, which is correlated with recurrence, metastasis and poor outcome of HCC patients. Functional analysis indicated that LCAT inhibited HCC cell proliferation, migration and invasion both in vitro and in vivo. Clinicopathological data showed that LCAT was negatively associated with HCC size and metastasis (HCC size ≤ 3 cm vs 3-9 cm, P < 0.001; 3-9 cm vs > 9 cm, P < 0.01; metastatic-free HCC vs extrahepatic metastatic HCC, P < 0.05). LCAT suppressed the growth, migration and invasion of HCC cell lines via PI3K/AKT/mTOR signaling. Our results indicated that the logistic regression model based on LCAT, TNM stage and the serum level of α-fetoprotein in HCC patients could effectively predict high metastatic risk HCC patients. CONCLUSION: LCAT is downregulated at translational and protein levels in HCC and might inhibit tumor metastasis via attenuating PI3K/AKT/mTOR signaling. LCAT is a prognostic marker and potential therapeutic target for HCC.
RESUMEN
Daurian ground squirrels (Spermophilus dauricus) experience various stress states during winter hibernation, but the impact on testicular function remains unclear. This study focused on the effects of changes in testicular autophagy, apoptosis, and mitochondrial homeostasis signaling pathways at various stages on the testes of Daurian ground squirrels. Results indicated that: (1) During winter hibernation, there was a significant increase in seminiferous tubule diameter and seminiferous epithelium thickness compared to summer. Spermatogonia number and testosterone, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels were higher during inter-bout arousal, suggesting that the testes remained stable during hibernation. (2) An increased number of mitochondria with intact morphology were observed during hibernation, indicating that mitochondrial homeostasis may contribute to testicular stability. (3) DNA fragmentation was evident in the testes during the hibernation and inter-bout arousal stages, with the highest level of caspase3 enzyme activity detected during inter-bout arousal, together with elevated levels of Bax/Bcl-2 and Lc3 II/Lc3 I, indicating an up-regulation of apoptosis and autophagy signaling pathways during hibernation. (4) The abundance of DRP1, MFF, OPA1, and MFN2 proteins was increased, suggesting an up-regulation of mitochondrial dynamics-related pathways. Overall, testicular autophagy, apoptosis, and mitochondrial homeostasis-related signaling pathways were notably active in the extreme winter environment. The well-maintained mitochondrial morphology may favor the production of reproductive hormones and support stable testicular morphology.
Asunto(s)
Apoptosis , Autofagia , Hibernación , Dinámicas Mitocondriales , Sciuridae , Testículo , Animales , Masculino , Sciuridae/fisiología , Sciuridae/metabolismo , Hibernación/fisiología , Testículo/metabolismo , Testículo/fisiología , Autofagia/fisiología , Mitocondrias/metabolismo , Estaciones del Año , Testosterona/metabolismo , Hormona Folículo Estimulante/metabolismo , Hormona Luteinizante/metabolismoRESUMEN
Carnosine dipeptidase 1 (CNDP1), an enzyme integral to the hydrolysis of dipeptides containing histidine, plays an indispensable role in myriad physiological processes, including hydrolysis of proteins, maturation of specific biochemical functionalities within proteins, tissue regeneration, and regulation of cell cycle. However, the implications of CNDP1 in oncogenesis and its prognostic value are not yet fully elucidated. Initially, we procured the GSE40367 dataset from the Gene Expression Omnibus and established a protein-protein interaction network. Thereafter, we conducted functional and pathway enrichment analyses utilizing GO, KEGG, and GSEA. Moreover, we undertook an association analysis concerning the expression of CNDP1 with immune infiltration, along with survival analysis across various cancers and specifically in hepatocellular carcinoma (HCC). Our study uncovered a total of 2,248 differentially expressed genes, with a down-regulation of CNDP1 in HCC and other cancers. Our explorations into the relationship between CNDP1 and immune infiltration disclosed a negative correlation between CNDP1 expression and the presence of immune cells in HCC. Survival analyses revealed that diminished expression of CNDP1 correlates with an adverse prognosis in HCC and several other types of cancer. These observations intimate that CNDP1 holds promise as a novel prognostic biomarker for both pan-cancer and HCC.
RESUMEN
Microvascular invasion (MVI) is an adverse prognostic indicator of tumor recurrence after surgery for hepatocellular carcinoma (HCC). Therefore, developing a nomogram for estimating the presence of MVI before liver resection is necessary. We retrospectively included 260 patients with pathologically confirmed HCC at the Fifth Medical Center of Chinese PLA General Hospital between January 2021 and April 2024. The patients were randomly divided into a training cohort (n = 182) for nomogram development, and a validation cohort (n = 78) to confirm the performance of the model (7:3 ratio). Significant clinical variables associated with MVI were then incorporated into the predictive nomogram using both univariate and multivariate logistic analyses. The predictive performance of the nomogram was assessed based on its discrimination, calibration, and clinical utility. Serum carnosine dipeptidase 1 ([CNDP1] OR 2.973; 95 % CI 1.167-7.575; p = 0.022), cirrhosis (OR 8.911; 95 % CI 1.922-41.318; p = 0.005), multiple tumors (OR 4.095; 95 % CI 1.374-12.205; p = 0.011), and tumor diameter ≥3 cm (OR 4.408; 95 % CI 1.780-10.919; p = 0.001) were independent predictors of MVI. Performance of the nomogram based on serum CNDP1, cirrhosis, number of tumors and tumor diameter was achieved with a concordance index of 0.833 (95 % CI 0.771-0.894) and 0.821 (95 % CI 0.720-0.922) in the training and validation cohorts, respectively. It fitted well in the calibration curves, and the decision curve analysis further confirmed its clinical usefulness. The nomogram, incorporating significant clinical variables and imaging features, successfully predicted the personalized risk of MVI in HCC preoperatively.
RESUMEN
OBJECTIVES: To study the left heart structure and functional characteristics of term neonates with intrauterine growth restriction (IUGR). METHODS: This study included 86 term neonates with IUGR admitted to the Neonatal Ward of Beijing Friendship Hospital, Capital Medical University from January 2019 to January 2022 as the IUGR group, as well as randomly selected 86 term neonates without IUGR born during the same period as the non-IUGR group. The clinical data and echocardiographic data were compared between the two groups. RESULTS: The analysis of left heart structure and function showed that compared with the non-IUGR group, the IUGR group had significantly lower left ventricular mass, left ventricular end-diastolic diameter, left ventricular end-systolic diameter, left atrial diameter, end-diastolic interventricular septal thickness, left ventricular posterior wall thickness, left ventricular end-diastolic volume, left ventricular end-systolic volume, and stroke volume (P<0.05) and significantly higher ratio of end-diastolic interventricular septal thickness to left ventricular posterior wall thickness, proportion of neonates with a mitral peak E/A ratio of ≥1, and cardiac index (P<0.05). The Spearman correlation analysis suggested that stroke volume was positively correlated with birth weight and body surface area (rs=0.241 and 0.241 respectively; P<0.05) and that the ratio of end-diastolic interventricular septal thickness to left ventricular posterior wall thickness was negatively correlated with birth weight and body surface area (rs=-0.229 and -0.225 respectively; P<0.05). CONCLUSIONS: The left ventricular systolic function of neonates with IUGR is not significantly different from that of neonates without IUGR. However, the ventricular septum is thicker in neonates with IUGR. This change is negatively correlated with birth weight and body surface area. The left ventricular diastolic function may be impaired in neonates with IUGR.
Asunto(s)
Retardo del Crecimiento Fetal , Corazón , Humanos , Recién Nacido , Peso al Nacer , Ecocardiografía , Ventrículos Cardíacos/diagnóstico por imagen , Función Ventricular IzquierdaRESUMEN
Parathlasia gen. nov., a new leafhopper genus and species of Ledrini, P.guizhouensis sp. nov., from Guizhou, China are described. Morphological differences between the new genus to other related Chinese genera are discussed. A key to distinguish Parathlasia from other similar genera is given.
RESUMEN
Purpose: Post hemorrhagic shock mesenteric lymph (PHSML) return contributes to CD4+ T cell dysfunction, which leads to immune dysfunction and uncontrolled inflammatory response. Tumor necrosis factor α induced protein 8 like-2 (TIPE2) is one of the essential proteins to maintain the immune homeostasis. This study investigated the role of TIPE2 in regulation of CD4+ T lymphocyte function in interaction of PHSML and TLR2/TLR4. Methods: The splenic CD4+ T cells were isolated from various mice (WT, TLR2-/-, TLR4-/-) by immunomagnetic beads, and stimulated with PHSML, normal lymphatic fluid (NML), respectively. Application of TIPE2-carrying interfering fragments of lentivirus were transfected to WT, TLR4-/-, and TLR2-/- CD4+ T cells, respectively. After interference of TIPE2, they were stimulated with PHSML and NML for the examinations of TIPE2, TLR2, and TLR4 mRNA expressions, proliferation, activation molecules on surface, and cytokine secretion function. Results: PHSML stimulation significantly upregulated TIPE2, TLR2, and TLR4 mRNA expressions, decreased proliferation, CD25 expression, and IFN-γ secretion, and increased the secretion ability of IL-4 in WT CD4+ T cells. TIPE2 silencing enhanced proliferative capacity, upregulated CD25 expression, and increased IFNγ secretion in CD4+ T cells. PHSML stimulated TLR2-/-CD4+ T or TLR4-/-CD4+ T cells of which TIPE2 were silenced. TLR2 or TLR4 knockout attenuated PHSML-induced CD4+ T cells dysfunction; PHSML stimulation of silent TIPE2-expressing TLR2-/-CD4+ T or TLR4-/-CD4+ T revealed that the coexistence of low TIPE2 expression with lack of TLR2 or TLR4 eliminated this beneficial effect. Conclusion: TIPE2 improves the PHSML-mediated CD4+T cells dysfunction by regulating TLR2/TLR4 pathway, providing a new intervention target following hemorrhagic shock-induced immune dysfunction.
Asunto(s)
Choque Hemorrágico , Animales , Linfocitos T CD4-Positivos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , ARN Mensajero , Choque Hemorrágico/complicaciones , Receptor Toll-Like 2/genética , Receptor Toll-Like 4RESUMEN
Migration of keratinocytes plays a crucial role in the re-epithelialization phase during wound healing. Circular RNA (circRNA) protein kinase, DNA-activated, catalytic subunit (circ_PRKDC, hsa_circ_0084443) has been identified as a regulator of keratinocyte migration. However, the molecular basis governing it remains unclear. The levels of circ_PRKDC, microRNA (miR)-20a-3p, and RAS p21 protein activator 1 (RASA1) were assessed by quantitative real-time PCR (qRT-PCR) or western blot. Subcellular localization, Actinomycin D, and Ribonuclease (RNase) R assays were performed to characterise circ_PRKDC. Cell migration was gauged by transwell and wound-healing assays. A direct relationship between miR-20a-3p and circ_PRKDC or RASA1 was verified by dual-luciferase reporter and RNA pull-down assays. Circ_PRKDC expression was reduced in wound skin during wound healing. Circ_PRKDC modulated migration of HaCaT keratinocytes. Mechanistically, circ_PRKDC directly targeted miR-20a-3p. The regulation of circ_PRKDC on HaCaT keratinocyte migration was mediated by miR-20a-3p. RASA1 was identified as a direct and functional target of miR-20a-3p, and miR-20a-3p-mediated inhibition of RASA1 impacted HaCaT keratinocyte migration. Circ_PRKDC acted as a post-transcriptional modulator of RASA1 expression through miR-20a-3p. Moreover, circ_PRKDC modulated migration of HaCaT keratinocytes by RASA1. Our findings demonstrated a novel molecular basis, the miR-20a-3p/RASA1 axis, for the regulation of circ_PRKDC on HaCaT keratinocyte migration.
Asunto(s)
Proteína Quinasa Activada por ADN , MicroARNs , Movimiento Celular/genética , Proliferación Celular/genética , Proteína Quinasa Activada por ADN/metabolismo , Queratinocitos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Cicatrización de Heridas/genéticaRESUMEN
Severe hemorrhagic shock leads to excessive inflammation and immune dysfunction, which results in high mortality related to mesenteric lymph return. A recent study showed that stellate ganglion block (SGB) increased the survival rate in rats suffering hemorrhagic shock. However, whether SGB ameliorates immune dysfunction induced by hemorrhagic shock remains unknown. The aim of the present study was to verify the favorable effects of SGB on the proliferation and function of splenic CD4 + T cells isolated from rats that underwent hemorrhagic shock and to investigate the mechanism related to the SGB interaction with autophagy and posthemorrhagic shock mesenteric lymph (PHSML). Male rats underwent SGB or sham SGB and conscious acute hemorrhage followed by resuscitation and multiple treatments. After 3 h of resuscitation, splenic CD4 + T cells were isolated to measure proliferation and cytokine production following stimulation with ConA in vitro. CD4 + T cells isolated from normal rats were treated with PHSML drained from SBG-treated rats, and proliferation, cytokine production, and autophagy biomarkers were detected. Hemorrhagic shock reduced CD4 + T cell proliferation and production of interleukin (IL)-2, IL-4, and tumor necrosis factor-α-induced protein 8-like 2 (TIPE2). SGB or administration of the autophagy inhibitor 3-methyladenine (3-MA) normalized these indicators. In contrast, administration of rapamycin (RAPA) autophagy agonist or intravenous injection of PHSML inhibited the beneficial effects of SGB on CD4 + T cells from hemorrhagic shocked rats. Furthermore, PHSML incubation decreased proliferation and cytokine production, increased LC3 II/I and Beclin-1 expression, and reduced p-PI3K and p-Akt expression in normal CD4 + T cells. These adverse effects of PHSML were also abolished by 3-MA administration, as well as incubation with PHSML obtained from SGB-treated rats. SGB improves splenic CD4 + T cell function following hemorrhagic shock, which is related to the inhibition of PHSML-mediated autophagy.
Asunto(s)
Bloqueo Nervioso Autónomo , Autofagia , Linfocitos T CD4-Positivos/inmunología , Proliferación Celular , Linfa/metabolismo , Activación de Linfocitos , Choque Hemorrágico/terapia , Bazo/inmunología , Ganglio Estrellado , Animales , Proteínas Relacionadas con la Autofagia/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Mesenterio , Fenotipo , Ratas Wistar , Choque Hemorrágico/inmunología , Choque Hemorrágico/metabolismo , Choque Hemorrágico/patología , Bazo/metabolismoRESUMEN
OBJECTIVE: To study the effect of intestinal microecology on postnatal weight gain of very preterm infants in neonatal intensive care unit (NICU). METHODS: Very preterm infants who met the inclusion criteria were enrolled. The subjects were divided into the extrauterine growth retardation (EUGR) group(defined as a body weight less than the 10th percentile of the corresponding gestational age or a weight loss between birth and a given time of > 2SD were considered EUGR) and normal growth group, and the growth was evaluated at 2 and 4 weeks after birth. Meanwhile, the stool samples were taken to perform16S ribosomal RNA (rRNA) high -throughput 16S rRNA sequencing of the intestinal microflora was performed on stool samples. RESULTS: A total of 22 infants were included. There was no significant difference in the alpha diversity indexes indices between the two groups at 2 weeks or 4 weeks after birth. The beta diversity analysis showed that the two groups had similar principal components of the intestinal microflora were similar between the two groups. Linear discriminant analysis (LDA) effect size (LEfSe) showed that 2 weeks after birth, the bacteria with an absolute LDA score (log10) higher than 4 included Streptococcaceae, Streptococcus, Bacteroidetes, Bacteroidales and Stenotrophomonas in the EUGR group and Enterococcaceae and Enterococcus in the control group. At the 4th week after birth, the bacteria with an absolute LDA score (log10) higher than 3 in the EUGR group includedwere Clostriaceae, Eubacteriaceae and Eubacterium. TheBy comparing the composition of the microbial community composition comparison showed, significant differences were found in the principal components of Enterococcus and Streptococcus on the family and genus levels at 2 weeks after birth. No Bifidobacterium was found in either group at 4 weeks after birth. CONCLUSION: Intestinal microecology is different between infants with EUGR and those with normal growth. The diversity and richness of the intestinal microflora in preterm infants at the NICU are significantly insufficient and change dynamically with time, and the establishment of intestinal homeostasis is obviously delayed.
RESUMEN
The aim is to investigate that 17ß-estradiol (E2)/estrogen receptors (ERs) activation normalizes splenic CD4 + T lymphocytes proliferation and cytokine production through inhibition of endoplasmic reticulum stress (ERS) following hemorrhage. The results showed that hemorrhagic shock (hemorrhage through femoral artery, 38-42 mmHg for 90 min followed by resuscitation of 30 min and subsequent observation period of 180 min) decreased the CD4+ T lymphocytes proliferation and cytokine production after isolation and incubation with Concanavalin A (5 µg/mL) for 48 h, induced the splenic injury with evidences of missed contours of the white pulp, irregular cellular structure, and typical inflammatory cell infiltration, upregulated the expressions of ERS biomarkers 78 kDa glucose-regulated protein (GRP78) and activating transcription factor 6 (ATF6). Either E2, ER-α agonist propyl pyrazole triol (PPT) or ERS inhibitor 4-Phenylbutyric acid administration normalized these parameters, while ER-ß agonist diarylpropionitrile administration had no effect. In contrast, administrations of either ERs antagonist ICI 182,780 or G15 abolished the salutary effects of E2. Likewise, ERS inducer tunicamycin induced an adverse effect similarly to that of hemorrhagic shock in sham rats, and aggravated shock-induced effects, also abolished the beneficial effects of E2 and PPT, respectively. Together, the data suggest that E2 produces salutary effects on CD4+ T lymphocytes function, and these effects are mediated by ER-α and GPR30, but not ER-ß, and associated with the attenuation of hemorrhagic shock-induced ERS.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estradiol/farmacología , Choque Hemorrágico/inmunología , Bazo/inmunología , Factor de Transcripción Activador 6/metabolismo , Animales , Biomarcadores/metabolismo , Linfocitos T CD4-Positivos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citocinas/biosíntesis , Proteínas de Choque Térmico/metabolismo , Masculino , Modelos Biológicos , Ratas , Ratas Wistar , Bazo/patologíaRESUMEN
ABSTRACT: Vascular hypo-reactivity plays a critical role inducing organ injury during hemorrhagic shock. 17ß-estradiol (E2) can induce vasodilation to increase blood flow in various vascular beds. This study observed whether E2 can restore vascular hypo-reactivity induced by hemorrhagic shock, and whether E2 effects are associated with RhoA-Rho kinase (ROCK)-myosin light chain kinase phosphatase (MLCP) pathway. The hemorrhagic shock model (40â±â2âmm Hg for 1âh, resuscitation for 4âh) was established in ovary intact sham operation (OVI), ovariectomized (OVX), and OVX plus E2 supplement female mice. Intestinal microvascular loop was used to assess blood flow in vivo, mRNA expression and vascular reactivity in vitro. Hemorrhagic shock significantly reduced norepinephrine microvascular reactivity. Decreased microvascular reactivity was exacerbated by OVX and reversed by E2 supplement. U-46619 (RhoA agonist) increased microvascular reactivity, and C3 transferase (an ADP ribosyl transferase that selectively induces RhoA ribosylation) or Y-27632 (ROCK inhibitor) inhibited sham mice microvascular reactivity. Similarly, U-46619 increased microvascular reactivity in OVI and OVX mice following hemorrhagic shock, which was abolished by Y-27632 or concomitant incubation of okadaic acid (OA) (MLCP inhibitor) and Y-27632. In OVX plus E2 supplement mice with hemorrhagic shock, Y-27632 inhibited microvascular reactivity, which was abolished by concomitant U-46619 application. Lastly, hemorrhagic shock remarkably decreased intestinal loop blood flow, RhoA and ROCK mRNA expressions in vascular tissues in OVX females, but not in OVI females, which were reversed by E2 supplement. These results indicate that estrogen improves microvascular reactivity during hemorrhagic shock, and RhoA-ROCK signaling pathway may mediate E2 effects.
Asunto(s)
Estradiol/uso terapéutico , Estrógenos/uso terapéutico , Choque Hemorrágico/tratamiento farmacológico , Transducción de Señal/fisiología , Vasoconstricción/fisiología , Quinasas Asociadas a rho/fisiología , Animales , Femenino , Ratones , Choque Hemorrágico/fisiopatologíaRESUMEN
BACKGROUND: Immune dysfunction is associated with posthemorrhagic shock mesenteric lymph (PHSML) return. To determine the proliferation and cytokine production capacity of CD4+ T lymphocytes, the effect of PHSML drainage on spleen CD4+ T lymphocytes in a mouse model of hemorrhagic shock was assessed. METHODS: The normal spleen CD4+ T lymphocytes were in vitro incubated with either drained normal mesenteric lymph (NML), PHSML during hypotension (PHSML-H), or PHSML from 0 h to 3 h after resuscitation (PHSML-R) to verify direct proliferation effects of PHSML. RESULTS: Hemorrhagic shock led to reduction of proliferation and mRNA expression of interleukin 2 (IL-2) and IL-2 receptor in CD4+ T lymphocytes and to decrease in IL-2 and interferon γ (IFN-γ) levels in supernatants. In contrast, the interleukin-4 levels were increased. These effects were reversed by PHSML drainage. Moreover, NML incubation promoted CD4+ T lymphocyte proliferation, whereas both PHSML-H and PHSML-R treatment had a biphasic effects on CD4+ T lymphocyte proliferation, exhibiting an enhanced effect at early stages and an inhibitory effect at later stages. Compared with NML, PHSML-H increased IL-2 expression at 12 h, but decreased expression of both IL-2 and IFN-γ at 24 h. By contrast, PHSML-R induced significant increases in IL-2 and IFN-γ levels at 24 h. Interleukin-4 expression in CD4+ T lymphocytes was reduced at 12 h, but augmented at 24 h after incubation with either PHSML-H or PHSML-R. CONCLUSIONS: The results indicate that PHSML has a direct inhibitory effect on CD4+ T lymphocyte proliferation that induces an inflammatory response, which is associated with cellular immune dysfunction.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfa/inmunología , Mesenterio/inmunología , Choque Hemorrágico/complicaciones , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Animales , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Inmunidad Celular , Interferón gamma/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Linfa/metabolismo , Vasos Linfáticos , Recuento de Linfocitos , Masculino , Mesenterio/metabolismo , Ratones , Cultivo Primario de Células , Receptores de Interleucina-2/metabolismo , Choque Hemorrágico/sangre , Choque Hemorrágico/inmunología , Síndrome de Respuesta Inflamatoria Sistémica/sangreRESUMEN
Primary biliary cholangitis (PBC) is an autoimmune disease characterized by chronic destruction of the bile ducts. A major unanswered question regarding the pathogenesis of PBC is the precise mechanisms of small bile duct injury. Emperipolesis is one of cell-in-cell structures that is a potential histological hallmark associated with chronic hepatitis B. This study aimed to clarify the pathogenesis and characteristics of emperipolesis in PBC liver injury. Sixty-six PBC patients, diagnosed by liver biopsy combined with laboratory test, were divided into early-stage PBC (stages I and II, n = 39) and late-stage PBC (stages III and IV, n = 27). Emperipolesis was measured in liver sections stained with haematoxylin-eosin. The expressions of CK19, CD3, CD4, CD8, CD20, Ki67 and apoptosis of BECs were evaluated by immunohistochemistry or immunofluorescence double labelling. Emperipolesis was observed in 62.1% of patients with PBC, and BECs were predominantly host cells. The number of infiltrating CD3+ and CD8+ T cells correlated with the advancement of emperipolesis (R2 = 0.318, P < .001; R2 = 0.060, P < .05). The cell numbers of TUNEL-positive BECs and double staining for CK19 and Ki67 showed a significant positive correlation with emperipolesis degree (R2 = 0.236, P < .001; R2 = 0.267, P < .001). We conclude that emperipolesis mediated by CD8+ T cells appears to be relevant to apoptosis of BEC and thus may aggravate the further injury of interlobular bile ducts.
Asunto(s)
Apoptosis , Conductos Biliares/patología , Linfocitos T CD8-positivos/inmunología , Emperipolesis , Células Epiteliales/patología , Cirrosis Hepática Biliar/fisiopatología , Conductos Biliares/inmunología , Conductos Biliares/lesiones , Estudios de Casos y Controles , Proliferación Celular , Células Epiteliales/inmunología , Femenino , Humanos , Masculino , Persona de Mediana EdadRESUMEN
PURPOSE: To investigate the effect of mesenteric lymph drainage on the spleen injury and the expressions of inflammatory cytokines in splenic tissue in mice following hemorrhagic shock. METHODS: Male C57 mice were randomly divided into the sham shock, shock and shock+drainage groups. The mice in both shock and shock+drainage groups suffered femoral artery bleeding, maintained mean arterial pressure (MAP) of 40±2 mmHg for 90 min, and were resuscitated. And mesenteric lymph drainage was performed in the shock+drainage group at the time of resuscitation. After three hours of resuscitation, the splenic tissues were harvested for the histological observation and protein and mRNA expression analysis of cytokines. RESULTS: The spleen in the shock group revealed a significantly structural damage and increased mRNA expressions of MyD88 and TRAF6 and protein expressions of TIPE2, MyD88, TRIF and TRAF3 compared to the sham group. By contrast, the splenic pathological injury in the shock+drainage group was alleviated significantly, and the mRNA and protein expressions of TIPE2, MyD88, TRIF, TRAF3 and TRAF6 were significantly lower than those in the shock group. CONCLUSION: These results indicate that post-hemorrhagic shock mesenteric lymph drainage alleviates hemorrhagic shock-induced spleen injury and the expressions of inflammatory cytokines.
Asunto(s)
Inflamación/prevención & control , Vasos Linfáticos/cirugía , Mesenterio , Choque Hemorrágico/complicaciones , Bazo/lesiones , Animales , Modelos Animales de Enfermedad , Drenaje/métodos , Inflamación/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , ResucitaciónRESUMEN
BACKGROUND: Acute hemorrhage-induced excessive excitation of sympathetic-adrenal-medullary system (SAS) leads to gut hypoperfusion and barrier dysfunction, which is a critical event during hemorrhagic shock-induced multiple organ injury. Stellate ganglion blockade (SGB) has been widely used for suppression of sympathetic-adrenal-medullary system in the clinical practice. However, whether SGB improves intestinal barrier function after hemorrhagic shock remains unclear. Here, we hypothesized that the implementation of SGB restores intestinal barrier function and reduces gut injury. MATERIALS AND METHODS: Male rats received the SGB pretreatment and underwent hemorrhagic shock followed by resuscitation. The 96-h survival rate, intestinal permeability and morphology, D-lactic acid concentration and diamine oxidase activity in plasma, and expressions of F-actin, Claudin-1, and E-cadherin in intestinal tissues were observed. RESULTS: Pretreatment with SGB significantly enhances the 96-h survival rate in rats subjected to hemorrhagic shock (from 8.3% to 66.7%). Hemorrhagic shock reduced the coverage scale of intestinal mucus and intestinal villus width and height, enhanced the intestinal permeability to fluorescein isothiocyanate-dextran 4 and D-lactic acid concentration in plasma, and decreased the expressions of F-actin, Claudin-1, and E-Cadherin in intestinal tissue. These hemorrhagic shock-induced adverse effects were abolished by SGB treatment. CONCLUSIONS: SGB treatment has a beneficial effect during hemorrhagic shock, which is associated with the improvement of intestine barrier function. SGB may be considered as a new therapeutic strategy for treatment of hemorrhagic shock.
Asunto(s)
Enfermedades Intestinales/prevención & control , Mucosa Intestinal/patología , Bloqueo Nervioso/métodos , Choque Hemorrágico/terapia , Ganglio Estrellado/efectos de los fármacos , Anestésicos Locales/administración & dosificación , Animales , Modelos Animales de Enfermedad , Enfermedades Intestinales/etiología , Enfermedades Intestinales/patología , Mucosa Intestinal/inervación , Masculino , Permeabilidad/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Resucitación , Ropivacaína/administración & dosificación , Choque Hemorrágico/complicaciones , Choque Hemorrágico/mortalidad , Organismos Libres de Patógenos Específicos , Tasa de Supervivencia , Resultado del TratamientoRESUMEN
Abstract Purpose: To investigate the effect of mesenteric lymph drainage on the spleen injury and the expressions of inflammatory cytokines in splenic tissue in mice following hemorrhagic shock. Methods: Male C57 mice were randomly divided into the sham shock, shock and shock+drainage groups. The mice in both shock and shock+drainage groups suffered femoral artery bleeding, maintained mean arterial pressure (MAP) of 40±2 mmHg for 90 min, and were resuscitated. And mesenteric lymph drainage was performed in the shock+drainage group at the time of resuscitation. After three hours of resuscitation, the splenic tissues were harvested for the histological observation and protein and mRNA expression analysis of cytokines. Results: The spleen in the shock group revealed a significantly structural damage and increased mRNA expressions of MyD88 and TRAF6 and protein expressions of TIPE2, MyD88, TRIF and TRAF3 compared to the sham group. By contrast, the splenic pathological injury in the shock+drainage group was alleviated significantly, and the mRNA and protein expressions of TIPE2, MyD88, TRIF, TRAF3 and TRAF6 were significantly lower than those in the shock group. Conclusion: These results indicate that post-hemorrhagic shock mesenteric lymph drainage alleviates hemorrhagic shock-induced spleen injury and the expressions of inflammatory cytokines.
Asunto(s)
Animales , Masculino , Ratas , Choque Hemorrágico/complicaciones , Bazo/lesiones , Vasos Linfáticos/cirugía , Inflamación/prevención & control , Mesenterio , Resucitación , Drenaje/métodos , Modelos Animales de Enfermedad , Inflamación/etiología , Ratones Endogámicos C57BLRESUMEN
RATIONALE: Medulla oblongata dysplasia is an extremely rare form of neurodevelopmental immaturity in premature infants. Intracranial hemorrhage in premature infants may be closely related to neurodevelopmental immaturity. DIAGNOSES: We report a female premature infant who succumbed to intracranial hemorrhage caused by medulla oblongata dysplasia. PATIENT CONCERNS: The infant was born at 31 weeks gestation. The onset manifestation was symptomatic epilepsy associated with subependymal hemorrhage. INTERVENTIONS: Levetiracetam and sodium valproate were administered. During the hospitalization, hydrocephalus developed and the intracranial hemorrhage aggravated. OUTCOMES: The infant died on day 171 after birth. LESSONS: Early identification and prompt treatment should be emphasized. Clinicians should be aware of this condition, as it can potentially cause neonatal intracranial hemorrhage.