Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2405561, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39033541

RESUMEN

Achieving superconductivity at room temperature (RT) is a holy grail in physics. Recent discoveries on high-Tc superconductivity in binary hydrides H3S and LaH10 at high pressure have directed the search for RT superconductors to compress hydrides with conventional electron-phonon mechanisms. Here, an exceptional family of superhydrides is predicated under high pressures, MH12 (M = Mg, Sc, Zr, Hf, Lu), all exhibiting RT superconductivity with calculated Tcs ranging from 313 to 398 K. In contrast to H3S and LaH10, the hydrogen sublattice in MH12 is arranged as quasi-atomic H2 units. This unique configuration is closely associated with high Tc, attributed to the high electronic density of states derived from H2 antibonding states at the Fermi level and the strong electron-phonon coupling related to the bending vibration of H2 and H-M-H. Notably, MgH12 and ScH12 remain dynamically stable even at pressure below 100 GPa. The findings offer crucial insights into achieving RT superconductivity and pave the way for innovative directions in experimental research.

2.
Adv Sci (Weinh) ; 11(29): e2401642, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38774948

RESUMEN

Superconductivity at room temperature and near-ambient pressures is a highly sought-after phenomenon in physics and materials science. A recent study reported the presence of this phenomenon in N-doped lutetium hydride [Nature 615, 244 (2023)], however, subsequent experimental and theoretical investigations have yielded inconsistent results. This study undertakes a systematic examination of synthesis methods involving high temperatures and pressures, leading to insights into the impact of the reaction path on the products and the construction of a phase diagram for lutetium hydrides. Notably, the high-pressure phase of face-centered cubic LuH3 (fcc-LuH3) is maintained to ambient conditions through a high-temperature and high-pressure method. Based on temperature and anharmonic effects corrections, the lattice dynamic calculations demonstrate the stability of fcc-LuH3 at ambient conditions. However, no superconductivity is observed above 2 K in resistance and magnetization measurements in fcc-LuH3 at ambient pressure. This work establishes a comprehensive synthesis approach for lutetium hydrides, thereby enhancing the understanding of the high-temperature and high-pressure method employed in hydrides with superconductivity deeply.

3.
J Phys Chem Lett ; 15(16): 4256-4262, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38606677

RESUMEN

Transition metal nitrides have great potential applications as incompressible and high energy density materials. Various polymeric nitrogen structures significantly affect their properties, contributing to their complex bonding modes and coordination conditions. Herein, we first report a new manganese polynitride MnN4 with bifacial trans-cis [N4]n chains by treating with high-pressure and high-temperature conditions in a diamond anvil cell. Our experiments reveal that MnN4 has a P-1 symmetry and could stabilize in the pressure range of 56-127 GPa. Detailed pressure-volume data and calculations of this phase indicate that MnN4 is a potential hard (255 GPa) and high energy density (2.97 kJ/g) material. The asymmetric interactions impel N1 and N4 atoms to hybridize to sp2-3, which causes distortions of [N4]n chains. This work discovers a new polynitride material, fills the gap for the study of manganese polynitride under high pressure, and offers some new insights into the formation of polymeric nitrogen structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...