Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(13): e202217895, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36734515

RESUMEN

The development of chain-growth click polymerization is challenging yet desirable in modern polymer chemistry. In this work, we reported a novel chain-growth click polymerization based on the thiol-Michael reaction. This polymerization could be performed efficiently under ambient conditions and spatiotemporally regulated by ultraviolet light, allowing the synthesis of sulfur-containing polymers in excellent yields and high molecular weights. Density functional theory calculations indicated that the thiolate addition to the Michael acceptor is the rate-determining step, and introducing the phenyl group could facilitate the chain-growth process. This polymerization is a new type of chain-growth click polymerization, which will provide a unique approach to creating functional polymers.

2.
Nano Lett ; 19(12): 8749-8757, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31671944

RESUMEN

Inspired by the natural motors capable of performing multiple tasks in complex living environments, synthetic nanomotors emerge as a potential vehicle for revolutionizing biomedical processes. Yet current motors suffer from decreased and even completely hindered motion in a complex physiological environment, shadowing the future of this booming field. To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. This motor is constructed precisely via controlled radical polymerization and click chemistry and propelled with biocompatible catalase. Such a molecular nanomotor possesses tadpole-like asymmetry and is able to overcome Brownian motion, and demonstrates strong directional propulsion (linear and coiled cyclic trajectories) in a viscous tumor microenvironment gel model at an ultralow hydrogen peroxide level of 2 mM (0.006%). In addition, the molecular nanomotor exhibits superior stability in serum containing cell medium and good biocompatibility in blood. Such molecular bottlebrush based nanomotors may represent a unique platform for overcoming the tissue penetration barrier.


Asunto(s)
Modelos Biológicos , Nanoestructuras , Neoplasias/metabolismo , Microambiente Tumoral , Animales , Ratones , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA