Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Med ; 18(3): 499-515, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38806989

RESUMEN

Cardiac fibrosis caused by ventricular remodeling and dysfunction such as post-myocardial infarction (MI) can lead to heart failure. RNA N6-methyladenosine (m6A) methylation has been shown to play a pivotal role in the occurrence and development of many illnesses. In investigating the biological function of the m6A reader YTHDF1 in cardiac fibrosis, adeno-associated virus 9 was used to knock down or overexpress the YTHDF1 gene in mouse hearts, and MI surgery in vivo and transforming growth factor-ß (TGF-ß)-activated cardiac fibroblasts in vitro were performed to establish fibrosis models. Our results demonstrated that silencing YTHDF1 in mouse hearts can significantly restore impaired cardiac function and attenuate myocardial fibrosis, whereas YTHDF1 overexpression could further enhance cardiac dysfunction and aggravate the occurrence of ventricular pathological remodeling and fibrotic development. Mechanistically, zinc finger BED-type containing 6 mediated the transcriptional function of the YTHDF1 gene promoter. YTHDF1 augmented AXL translation and activated the TGF-ß-Smad2/3 signaling pathway, thereby aggravating the occurrence and development of cardiac dysfunction and myocardial fibrosis. Consistently, our data indicated that YTHDF1 was involved in activation, proliferation, and migration to participate in cardiac fibrosis in vitro. Our results revealed that YTHDF1 could serve as a potential therapeutic target for myocardial fibrosis.


Asunto(s)
Tirosina Quinasa del Receptor Axl , Fibrosis , Infarto del Miocardio , Proteínas Proto-Oncogénicas , Proteínas de Unión al ARN , Proteínas Tirosina Quinasas Receptoras , Animales , Ratones , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Masculino , Ratones Endogámicos C57BL , Transducción de Señal , Miocardio/patología , Miocardio/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Remodelación Ventricular/genética , Modelos Animales de Enfermedad , Adenosina/análogos & derivados , Adenosina/metabolismo , Fibroblastos/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(13): e2320386121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38513101

RESUMEN

Stimuli-responsive soft robots offer new capabilities for the fields of medical and rehabilitation robotics, artificial intelligence, and soft electronics. Precisely programming the shape morphing and decoupling the multiresponsiveness of such robots is crucial to enable them with ample degrees of freedom and multifunctionality, while ensuring high fabrication accuracy. However, current designs featuring coupled multiresponsiveness or intricate assembly processes face limitations in executing complex transformations and suffer from a lack of precision. Therefore, we propose a one-stepped strategy to program multistep shape-morphing soft millirobots (MSSMs) in response to decoupled environmental stimuli. Our approach involves employing a multilayered elastomer and laser scanning technology to selectively process the structure of MSSMs, achieving a minimum machining precision of 30 µm. The resulting MSSMs are capable of imitating the shape morphing of plants and hand gestures and resemble kirigami, pop-up, and bistable structures. The decoupled multistimuli responsiveness of the MSSMs allows them to conduct shape morphing during locomotion, perform logic circuit control, and remotely repair circuits in response to humidity, temperature, and magnetic field. This strategy presents a paradigm for the effective design and fabrication of untethered soft miniature robots with physical intelligence, advancing the decoupled multiresponsive materials through modular tailoring of robotic body structures and properties to suit specific applications.

3.
Angew Chem Int Ed Engl ; 63(16): e202317284, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38342760

RESUMEN

In this study, a series of enantioenriched sp3-Ge/B bimetallic modules were successfully synthesized via an enantioselective copper-catalyzed hydroboration of carbagermatrane (Ge)-containing alkenes. Orthogonal cross-coupling selectivity under different Pd-catalyzed conditions was achieved in an enantiospecific manner. Notably, the chiral secondary Ge exhibited a remarkable transmetallation ability prior to primary or secondary Bpin. The effectiveness of this Ge/B bimetallic strategy was further demonstrated through the development of new functional small molecules with Aggregation-Induced Emission (AIE) and Circularly Polarized Luminescence (CPL) performance. This represents the first successful example of synthesis of enantioenriched alkylgermanium reagents that permit enantiospecific cross-coupling reactions.

4.
Small ; 20(11): e2304308, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37936314

RESUMEN

Thermal energy harvesting provides an opportunity for multi-node systems to achieve self-power autonomy. Thermoelectric generators (TEGs), either by thermocouple arrangement with higher-aspect-ratios or thermoelectric films overlay, are limited by the small temperature difference and its short-duration (less than dozens of minutes), hindering the harvesting efficiency. Here, by introducing thermal diodes with dual-direction thermal regulation ability to optimize the heat flux path, the proposed TEGs exhibit enhanced power-supply capability with unprecedented long-duration (more than hours). In contrast with conventional TEGs with fixed-leg dimensions enabled single output, these compact-TEGs can supply up to fourteen output-channels for selection, the produced power ranges from 1.11 to 921.99 µW, open circuit voltage ranges from 8.07 to 51.32 mV, when the natural temperature difference is 53.84 °C. Compared to the most recent TEGs, the proposed TEGs in this study indicate higher power (more than hundreds times) and much longer output duration (2.4-120 times) in a compact manner.

5.
ACS Appl Mater Interfaces ; 15(48): 56537-56546, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37992157

RESUMEN

Antifouling is essential to guaranteeing the sensitivity and precision of flexible sensing interfaces. Materials and structures are the two primary strategies. However, optimizing the inherent microstructures to integrate waterproofing and sensing is rarely reported. To improve the liquid repellency of micropyramid structures, this work presents a study of the design and fabrication of T-shaped micropyramid structures. These structures are patterned uniformly and largely on polydimethylsiloxane (PDMS) skin by the new process of two-step magnetic induction. The waterproofing is related to the breakthrough pressure and the liquid repellency, both of which are a function of structural characteristics, D, and material properties, θY. At the breakthrough transition, two failure models distinguished by θY appear: the depinning transition and the sagging transition. Meanwhile, when considering D in practice, some models will shift and occur early. The D value regulates the transition of the material's wettability to the liquid repellency. The influence of the material's inherent nonwettability on liquid repellency diminishes as D decreases, and the transition from completely wetting liquids to super-repellents can be achieved. Experiments demonstrate that for D = 0.3 under water the resistance is approximately 142 times larger than the depth of the structure, considerably facilitating the waterproofing of conventional micropyramid arrays. This work provides a novel method for fabricating flexible T-shaped micropyramid array structures and opens a new window on flexible sensing interfaces with excellent waterproofing.

6.
Proc Natl Acad Sci U S A ; 120(42): e2308301120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37792517

RESUMEN

Artificial cilia integrating both actuation and sensing functions allow simultaneously sensing environmental properties and manipulating fluids in situ, which are promising for environment monitoring and fluidic applications. However, existing artificial cilia have limited ability to sense environmental cues in fluid flows that have versatile information encoded. This limits their potential to work in complex and dynamic fluid-filled environments. Here, we propose a generic actuation-enhanced sensing mechanism to sense complex environmental cues through the active interaction between artificial cilia and the surrounding fluidic environments. The proposed mechanism is based on fluid-cilia interaction by integrating soft robotic artificial cilia with flexible sensors. With a machine learning-based approach, complex environmental cues such as liquid viscosity, environment boundaries, and distributed fluid flows of a wide range of velocities can be sensed, which is beyond the capability of existing artificial cilia. As a proof of concept, we implement this mechanism on magnetically actuated cilia with integrated laser-induced graphene-based sensors and demonstrate sensing fluid apparent viscosity, environment boundaries, and fluid flow speed with a reconfigurable sensitivity and range. The same principle could be potentially applied to other soft robotic systems integrating other actuation and sensing modalities for diverse environmental and fluidic applications.


Asunto(s)
Cilios , Magnetismo , Fenómenos Físicos , Hidrodinámica , Fenómenos Magnéticos
7.
Artículo en Inglés | MEDLINE | ID: mdl-37548549

RESUMEN

Aims: Myocardial ischemia-reperfusion (I/R) injury facilitates cardiomyocyte death and endangers human health. N6-methyladenosine (m6A) methylation plays a critical role in cardiovascular diseases. The m6A reader YTHDF2 identifies m6A-modified RNA and promotes target RNA degradation. Hence, we hypothesized that YTHDF2 affects I/R injury by regulating RNA stability. Results: Both messenger RNA (mRNA) and protein levels of YTHDF2 were upregulated in I/R mice and hypoxia-reoxygenation (H/R)-induced cardiomyocytes. Silencing endogenous YTHDF2 abrogated cardiac dysfunction and lowered the infarct size in I/R mice, and the forced expression of YTHDF2 aggravated these adverse pathological processes. Consistently, the protective effect of silencing YTHDF2 occurred in cardiomyocytes exposed to H/R and erastin. Further, RNA-Seq and RNA-binding protein immunoprecipitation (RIP) revealed that YTHDF2 recognized the m6A modification sites of the ferroptosis-related gene solute carrier family 7 member 11 (SLC7A11) mRNA to promote its degradation both in vivo and in vitro. Inhibition of SLC7A11 impaired cardiac function, increased infarct size, and the release of lactate dehydrogenase (LDH) in I/R mice after silencing YTHDF2. The beneficial effects of si-YTHDF2 on H/R injury were reversed by co-transfection with SLC7A11-specific siRNA (si-SLC7A11), which substantially exacerbated ferroptosis and the production of reactive oxygen species. Innovation and Conclusion: The cardioprotective effects of silencing YTHDF2 are accomplished by increasing SLC7A11 stability and expression, reducing ferroptosis, and providing novel potential therapeutic targets for treating ischemic cardiac diseases.

8.
J Hazard Mater ; 460: 132399, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37647659

RESUMEN

The excessive application of chemical fertilizers and pesticides in apple orchards is responsible for high levels of manganese and copper in soil, and this poses a serious threat to soil health. We conducted a three-year field experiment to study the remediation effect and mechanism of fulvic acid on soil with excess manganese and copper. The exogenous application of fulvic acid significantly reduced the content of manganese and copper in soil and plants; increased the content of calcium; promoted the growth of apple plants; improved the fruit quality and yield of apple; increased the content of chlorophyll; increased the activity of superoxide dismutase, peroxidase, and catalase; and reduced the content of malondialdehyde. The number of soil culturable microorganisms, soil enzyme activity, soil microbial community diversity, and relative abundance of functional bacteria were increased, and the detoxification of the glutathione metabolism function was enhanced. The results of this study provide new insights that will aid the remediation of soil with excess manganese and copper using fulvic acid.


Asunto(s)
Malus , Metales Pesados , Cobre , Manganeso , Metales Pesados/toxicidad
9.
Adv Sci (Weinh) ; 10(23): e2302409, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37288527

RESUMEN

To navigate in complex and unstructured real-world environments, soft miniature robots need to possess multiple functions, including autonomous environmental sensing, self-adaptation, and multimodal locomotion. However, to achieve multifunctionality, artificial soft robots should respond to multiple stimuli, which can be achieved by multimaterial integration using facile and flexible fabrication methods. Here, a multimaterial integration strategy for fabricating soft millirobots that uses electrodeposition to integrate two inherently non-adherable materials, superhydrophilic hydrogels and superhydrophobic elastomers, together via gel roots is proposed. This approach enables the authors to electrodeposit sodium alginate hydrogel onto a laser-induced graphene-coated elastomer, which can then be laser cut into various shapes to function as multi-stimuli-responsive soft robots (MSRs). Each MSR can respond to six different stimuli to autonomously transform their shapes, and mimic flowers, vines, mimosas, and flytraps. It is demonstrated that MSRs can climb slopes, switch locomotion modes, self-adapt between air-liquid environments, and transport cargo between different environments. This multimaterial integration strategy enables creating untethered soft millirobots that have multifunctionality, such as environmental sensing, self-propulsion, and self-adaptation, paving the way for their future operation in complex real-world environments.

10.
J Colloid Interface Sci ; 648: 834-845, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37327626

RESUMEN

Incorporating high thermal conductivity fillers into the matrix material and optimizing their distribution offers a targeted approach to controlling heat flow conduction. However, the design of composite microstructure, particularly the precise orientation of fillers in the micro-nano domain, remains a formidable challenge to date. Here, we report a novel method for constructing directional/localized thermal conduction pathways based on silicon carbide whiskers (SiCWs) in the polyacrylamide (PAM) gel matrix using micro-structured electrodes. SiCWs are one-dimensional nanomaterials with ultra-high thermal conductivity, strength, and hardness. The outstanding properties of SiCWs can be maximized through ordered orientation. Under the conditions of 18 V voltage and 5 MHz frequency, SiCWs can achieve complete orientation in only about 3 s. In addition, the prepared SiCWs/PAM composite exhibits interesting properties, including enhanced thermal conductivity and localized conduction of heat flow. When the SiCWs concentration is 0.5 g·L-1, the thermal conductivity of SiCWs/PAM composite is about 0.7 W·m-1·K-1, which is 0.3 W·m-1·K-1 higher than that of PAM gel. This work achieved structural modulation of the thermal conductivity by constructing a specific spatial distribution of SiCWs units in the micro-nanoscale domain. The resulting SiCWs/PAM composite has unique localized heat conduction properties and is expected to become a new generation of composites with better characteristics and functions in thermal transmission and thermal management.

11.
Plant Biotechnol J ; 21(7): 1408-1425, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37031416

RESUMEN

Stone cells are often present in pear fruit, and they can seriously affect the fruit quality when present in large numbers. The plant growth regulator NAA, a synthetic auxin, is known to play an active role in fruit development regulation. However, the genetic mechanisms of NAA regulation of stone cell formation are still unclear. Here, we demonstrated that exogenous application of 200 µM NAA reduced stone cell content and also significantly decreased the expression level of PbrNSC encoding a transcriptional regulator. PbrNSC was shown to bind to an auxin response factor, PbrARF13. Overexpression of PbrARF13 decreased stone cell content in pear fruit and secondary cell wall (SCW) thickness in transgenic Arabidopsis plants. In contrast, knocking down PbrARF13 expression using virus-induced gene silencing had the opposite effect. PbrARF13 was subsequently shown to inhibit PbrNSC expression by directly binding to its promoter, and further to reduce stone cell content. Furthermore, PbrNSC was identified as a positive regulator of PbrMYB132 through analyses of co-expression network of stone cell formation-related genes. PbrMYB132 activated the expression of gene encoding cellulose synthase (PbrCESA4b/7a/8a) and lignin laccase (PbrLAC5) binding to their promotors. As expected, overexpression or knockdown of PbrMYB132 increased or decreased stone cell content in pear fruit and SCW thickness in Arabidopsis transgenic plants. In conclusion, our study shows that the 'PbrARF13-PbrNSC-PbrMYB132' regulatory cascade mediates the biosynthesis of lignin and cellulose in stone cells of pear fruit in response to auxin signals and also provides new insights into plant SCW formation.


Asunto(s)
Arabidopsis , Pyrus , Frutas/metabolismo , Lignina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas
12.
ACS Omega ; 8(7): 6411-6422, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36844530

RESUMEN

Apple replant disease (ARD) is common in apple production, which seriously affects the growth and development of apples. In this study, hydrogen peroxide with a bactericidal effect was used to treat the replanted soil, and the effects of different concentrations of hydrogen peroxide on replanted seedlings and soil microbiology were investigated in order to seek a green, clean way to control ARD. Five treatments were set up in this study: replanted soil (CK1), replanted soil with methyl bromide fumigation (CK2), replanted soil + 1.5% hydrogen peroxide (H1), replanted soil + 3.0% hydrogen peroxide (H2), and replanted soil + 4.5% hydrogen peroxide (H3). The results showed that hydrogen peroxide treatment improved replanted seedling growth and also inactivated a certain number of Fusarium, while the Bacillus, Mortierella, and Guehomyces also became more abundant in relative terms. The best results were obtained with replanted soil + 4.5% hydrogen peroxide (H3). Consequently, hydrogen peroxide applied to the soil can effectively prevent and control ARD.

13.
Transl Res ; 257: 30-42, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36775059

RESUMEN

Cardiac fibrosis is a common pathological change in the development of heart disease. Circular RNA (circRNA) has been shown to be related to the occurrence and development of various cardiovascular diseases. This study aimed to evaluate the effects and potential mechanisms of circHelz in cardiac fibrosis. Knockdown of circHelz alleviated cardiac fibrosis and myocardial fibroblast activation induced by myocardial infarction (MI) or angiotensin II (AngII) in vivo and transforming growth factor-ß (TGF-ß) in vitro. Overexpression of circHelz exacerbated cell proliferation and differentiation. Mechanistically, nuclear factor of activated T cells, cytoplasmic 2 (NFATc2) was found to act as a transcriptional activator to upregulate the expression of circHelz. The increased circHelz was demonstrated to bind to Yes-associated protein (YAP) and facilitate its localization in the nucleus to promote cell proliferation and growth. Moreover, silencing YAP1 reversed the detrimental effects caused by circHelz in vitro, as indicated by the observed decreases in cell viability, fibrotic marker expression levels, proliferation and migration. Collectively, the protective effect of circHelz knockdown against cardiac fibrosis injury is accomplished by inhibiting the nuclear translocation of YAP1. Thus, circHelz may be a novel target for the prevention and treatment of cardiovascular disease.


Asunto(s)
Infarto del Miocardio , ARN Circular , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Miocardio/patología , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Fibrosis , Diferenciación Celular , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fibroblastos/patología , Factor de Crecimiento Transformador beta1/metabolismo
14.
J Hazard Mater ; 440: 129786, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36007363

RESUMEN

Fusarium and phenolic acids in apple replant soil have deleterious effects on soil, which affects the growth of young replanted apple trees. Here, we studied the effects of different chemical fumigants (metham sodium, dazomet, calcium cyanamide, 1,3-dichloropropene, and methyl bromide) on Fusarium and phenolic acids in soil. The chemical fumigants disturbed the apple replant soil microbial community to different degrees in the order from highest to the lowest as methyl bromide > 1,3-dichloropropene > dazomet > metham sodium > calcium cyanamide. Compared with the control, the total numbers of Operational Taxonomic Unit (OTU) were 104.63 % and 9.38 % lower in the methyl bromide and calcium cyanamide treatments, respectively while the average contents of Fusarium were 88.04 % and 59.18% lower in these treatments, respectively. Higher disturbance degrees resulted in a slower recovery rate of the soil microbial community, which facilitated the transformation of the soil into a disease-suppressing state. During the recovery process, the roots recruited Streptomyces OTU2796 and Bacillus OTU2243, which alleviated Fusarium-induced stress via the synthesis of polyketones and macrolides. The roots also recruited Sphingomonas OTU3488, OTU5572, and OTU8147, which alleviated phenolic acid-induced stress through the degradation of benzoate and polycyclic aromatic hydrocarbons.


Asunto(s)
Fusarium , Malus , Microbiota , Plaguicidas , Hidrocarburos Policíclicos Aromáticos , Compuestos Alílicos , Cianamida , Hidrocarburos Bromados , Hidrocarburos Clorados , Hidroxibenzoatos , Macrólidos , Plaguicidas/química , Suelo , Tiadiazinas , Tiocarbamatos
15.
Front Microbiol ; 13: 839484, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308362

RESUMEN

In this study, an endophytic phlorizin-degrading Bacillus licheniformis XNRB-3 was isolated from the root tissue of healthy apple trees, and its control effect on apple replant disease (ARD) and how it alleviates the pathogen pressure via changes in soil microbiomes were studied. The addition of strain XNRB-3 in Fusarium infested soils significantly reduced the number of pathogens in the soil, thus resulting in a lower disease incidence, and the relative control effect on Fusarium oxysporum reached the highest of 66.11%. The fermentation broth can also protect the roots of the plants from Fusarium oxysporum, Fusarium moniliforme, Fusarium proliferatum, and Fusarium solani infection. These antagonistic effects were further validated using an in vitro assay in which the pathogen control was related to growth and spore germination inhibition via directly secreted antimicrobial substances and indirectly affecting the growth of pathogens. The secreted antimicrobial substances were identified using gas chromatography-mass spectrometry (GC-MS) technology. Among them, alpha-bisabolol and 2,4-di-tert-butylphenol had significant inhibitory effects on many planted pathogenic fungi. Butanedioic acid, monomethyl ester, and dibutyl phthalate promoted root development of Arabidopsis plants. Strain XNRB-3 has multifarious plant growth promoting traits and antagonistic potential. In pot and field experiments, the addition of strain XNRB-3 significantly promoted the growth of plants, and the activity of enzymes related to disease resistance [superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)] was also significantly enhanced. It also reduced the abundance of four species of Fusarium and the content of phenolic acids in the rhizosphere soil, improved soil microbial community structure and nutritional conditions, and increased soil microbial diversity and activity, as well as the soil enzyme activity. The above results indicated that B. licheniformis XNRB-3 could be developed into a promising biocontrol and plant-growth-promoting agent.

16.
ACS Omega ; 7(9): 7920-7930, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35284737

RESUMEN

A two-year field experiment was carried out in order to study the effect of different soil modifiers on alleviating apple replant disease (ARD) in the apple orchards. Four treatments were as follows: replanted apple orchard soil (CK), replanted apple orchard soil treated with quicklime 1.0 g·kg-1 (T1), replanted apple orchard soil treated with 1.0 g·kg-1 quicklime and 1.0 g·kg-1 superphosphate (T2), and replanted apple orchard soil treated with 1.0 g·kg-1 plant ash (T3). Soil pH, plant biomass, soil bacteria, soil fungi, Fusarium oxysporum, soil enzymes, plant chlorophyll, and photosynthetic parameters were measured to detect the improvement effects of different soil amendments on acidified soil and to alleviate the ARD. The three treatments stably raised the pH of acidified soil and improved the conditions of the plant rhizosphere environment. Compared with the control, T1, T2, and T3 treatments significantly increased growth and plant biomass indexes, such as plant height and ground diameter, as well as photosynthetic parameters. Among the three treatments, T2 had the strongest effects. In July 2018 and July 2019, the number of bacteria was 151.3 and 190.5% higher in T2-treated soil than in control soil, and the number of soil fungi was 53.6 and 53.3% lower. In 2018 and 2019, the copy number of Fusarium solani was 63.6 and 58.6% lower and that of F. oxysporum was 51.8 and 55.7% lower. The T1, T2, and T3 treatments significantly increased soil enzyme activity and leaf chlorophyll content, and their effects were generally ranked T2 > T1 > T3. In conclusion, a combination of 1.0 g·kg-1 quicklime and 1.0 g·kg-1 superphosphate added to acidified replant soil increased the soil pH, improved the soil environment, increased the number of bacteria, reduced the number of fungi, increased soil enzyme activity, and improved plant photosynthetic capacity, thereby promoting the growth of replanted seedlings and effectively reducing ARD.

17.
Neurosci Lett ; 775: 136510, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35134492

RESUMEN

To improve accuracy of VsEP and avoid the inherent limitation of mechanical vibration, we designed an infrared optical stimulation approach to stimulate mouse vestibular system and measured the evoked potential. IR pulses (1871 nm, 30 pps and 100 µs pulse width) were delivered to mice with different vestibular dysfunction levels and the evoked potential was recorded. The result suggests that the amplitude and latency of the IR-evoked potential (IR-VsEP) were significantly associated with vestibular function integrity. Immunofluorescence staining confirmed that magnitude of IR-VsEP decreased was consistent with the loss of HCs. Micro-CT imaging revealed that the optical fiber was orientating towards the vestibular system. Taken together, we found that: 1) IR stimulation can generate VsEP evoked potential in vestibular system (IR-VsEP), which can be potentially used for vestibular function evaluation; 2) intact HCs and fully functional synaptic transmission are crucial for efficient IR-induced vestibular system stimulation.


Asunto(s)
Sistema Vestibular , Vestíbulo del Laberinto , Potenciales Evocados , Vestíbulo del Laberinto/fisiología , Vibración
18.
J Fungi (Basel) ; 8(1)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35050003

RESUMEN

Trichoderma asperellum strain 6S-2 with biocontrol effects and potential growth-promoting properties was made into a fungal fertilizer for the prevention of apple replant disease (ARD). 6S-2 fertilizer not only promoted the growth of Malus hupehensis Rehd seedlings in greenhouse and pot experiments, but also increased the branch elongation growth of young apple trees. The soil microbial community structure changed significantly after the application of 6S-2 fertilizer: the relative abundance of Trichoderma increased significantly, the relative abundance of Fusarium (especially the gene copy numbers of four Fusarium species) and Cryptococcus decreased, and the relative abundance of Bacillus and Streptomyces increased. The bacteria/fungi and soil enzyme activities increased significantly after the application of 6S-2 fertilizer. The relative contents of alkenes, ethyl ethers, and citrullines increased in root exudates of M. hupehensis Rehd treated with 6S-2 fertilizer and were positively correlated with the abundance of Trichoderma. The relative contents of aldehydes, nitriles, and naphthalenes decreased, and they were positively correlated with the relative abundance of Fusarium. In addition, levels of ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N), available phosphorus (AP), available potassium (AK), organic matter (SOM), and pH in rhizosphere soil were also significantly related to changes in the microbial community structure. In summary, the application of 6S-2 fertilizer was effective in alleviating some aspects of ARD by promoting plant growth and optimizing the soil microbial community structure.

19.
Environ Sci Pollut Res Int ; 29(2): 3022-3036, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34382174

RESUMEN

Methyl bromide has been banned worldwide because it causes damage to the ozone layer and the environment. To find a substitute for methyl bromide, the relationships among fumigation, plant growth, and the microbial community in replant soil require further study. We performed pot and field experiments to investigate the effects of dazomet fumigation on soil properties and plant performance. Changes in soil microbial community structure and diversity were assessed using high-throughput sequencing, and plant physiological performance and soil physicochemical properties were also measured. Dazomet fumigation enhanced photosynthesis and promoted plant growth in replant soil; it altered soil physical and chemical properties and reduced soil enzyme activities, although these parameters gradually recovered over time. After dazomet fumigation, the dominant soil phyla changed, microbial diversity decreased significantly, the relative abundance of biocontrol bacteria such as Mortierella increased, and the relative abundance of pathogenic bacteria such as Fusarium decreased. Over the course of the experiment, the soil microbial flora changed dynamically, and soil enzyme activities and other physical and chemical properties also recovered to a certain extent. This result suggested that the effect of dazomet on soil microorganisms was temporary. However, fumigation also led to an increase in some resistant pathogens, such as Trichosporon, that affect soil function and health. Therefore, it is necessary to consider potential negative impacts of dazomet on the soil environment and to perform active environmental risk management in China.


Asunto(s)
Suelo , Tiadiazinas , Fumigación , Microbiología del Suelo
20.
Nanomaterials (Basel) ; 13(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36615979

RESUMEN

Metasurfaces with a high engineering degree of freedom are promising building blocks for applications in metalenses, beam deflectors, metaholograms, sensing, and many others. Though the fundamental and technological challenges, proposing tunable metasurfaces is still possible. Previous efforts in this field are mainly taken on designing sophisticated structures with active materials introduced. Here, we present a generic kind of monolithic dielectric metasurfaces for tunable light field modulations. Changes in the period number and surrounding refractive index enable discrete and continuous modulations of spatial light fields, respectively. We exemplify this concept in monolithic Lithium Niobate metasurfaces for tunable metalenses and beam deflectors. The utilization of monolithic dielectric materials facilitates the ready integration of the metasurfaces with both chip and optical fiber platforms. This concept is not limited by the availability of active materials or expensive and time-consuming fabrication techniques, which can be applied to any transparent dielectric materials and various optical platforms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA