Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 59, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38180551

RESUMEN

Increasing evidence suggests that intestine microorganisms are closely related to shrimp growth, but there is no existing experiment to prove this hypothesis. Here, we compared the intestine bacterial community of fast- and slow-growing shrimp at the same developmental stage with a marked difference in body size. Our results showed that the intestine bacterial communities of slow-growing shrimp exhibited less diversity but were more heterogeneous than those of fast-growing shrimp. Uncultured_bacterium_g_Candidatus Bacilloplasma, Tamlana agarivorans, Donghicola tyrosinivorans, and uncultured_bacterium_f_Flavobacteriaceae were overrepresented in the intestines of fast-growing shrimp, while Shimia marina, Vibrio sp., and Vibrio campbellii showed the opposite trends. We further found that the bacterial community composition was significantly correlated with shrimp length, and some bacterial species abundances were found to be significantly correlated with shrimp weight and length, including T. agarivorans and V. campbellii, which were chosen as indicators for a reverse gavage experiment. Finally, T. agarivorans was found to significantly promote shrimp growth after the experiment. Collectively, these results suggest that intestine bacterial community could be important factors in determining the growth of shrimp, indicating that specific bacteria could be tested in further studies against shrimp growth retardation. KEY POINTS: • A close relationship between intestine bacterial community and shrimp growth was proven by controllable experiments. • The bacterial signatures of the intestine were markedly different between slow- and fast-growing shrimp, and the relative abundances of some intestine bacterial species were correlated significantly with shrimp body size. • Reverse gavage by Tamlana agarivorans significantly promoted shrimp growth.


Asunto(s)
Alteromonadaceae , Penaeidae , Animales , Alimentos Marinos
2.
J Immunol ; 209(10): 2022-2032, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36426947

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates immune modulation following exposure of animals to many environmental xenobiotics. However, its role in innate immune responses during viral infection is not fully understood, especially in invertebrates. In this study, a cDNA encoding an AhR homolog was cloned from an arthropod Litopenaeus vannamei (LvAhR). The expression of LvAhR was strongly upregulated in response to the challenge of white spot syndrome virus, a pathogen of highly contagious and fatal infectious disease of shrimp. The relevance of LvAhR to host defense was underlined by heightened susceptibility and elevated virus loads after AhR-silenced shrimp exposure to white spot syndrome virus. LvAhR could induce an apoptosis response through regulating the expression of L. vannamei caspase-1 (homologous to human caspase-3) by directly targeting its promoter that was required to couple with AhR nuclear translocator. Additionally, knockdown of L. vannamei caspase-1 resulted in elevated virus titers and a lower cell apoptotic rate. Thus, we demonstrate that an AhR-caspase axis restrains virus replication by promoting antiviral apoptosis, supporting a previously unidentified direct link between AhR signaling and caspase-mediated apoptosis signaling and, furthermore, suggests that the AhR-caspase axis could be a potential therapeutic target for enhancing antiviral responses in arthropods.


Asunto(s)
Artrópodos , Virus del Síndrome de la Mancha Blanca 1 , Animales , Humanos , Receptores de Hidrocarburo de Aril/genética , Caspasas/genética , Antivirales , Apoptosis/genética , Caspasa 1
3.
Fish Shellfish Immunol ; 126: 347-356, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35654385

RESUMEN

Meiotic recombination 11 (MRE11), a key component of the MRE11-RAD50-NBS1 (MRN) complex, plays important roles in damaged DNA repair and immune response. In this study, we described the molecular cloning of a new member of MRE11 from Litopenaeus vannamei named as LvMRE11. The full length of LvMRE11 was 2999 bp, including a 1947 bp open reading frame (ORF) that encoded a putative protein of 648 amino acids with a calculated molecular weight of ∼73.2 kDa LvMRE11 was universally expressed in all tested tissues and its expression in intestine was responsive to the challenge of white spot syndrome virus (WSSV), poly (I: C), poly [dA:dT], CpG-ODN 2006 and IFN stimulatory DNA (ISD). The dsRNA-mediated knockdown of LvMRE11 enhanced the susceptibility of shrimps to WSSV infection, as manifested by a higher mortality and viral loads observed in LvMRE11 silenced shrimps. Besides, silencing of LvMRE11 resulted in decreased expression levels of IRF-Vago-JAK/STAT pathway components, and Dorsal but not the Relish, as well as several antimicrobial peptides (AMPs). In conclusion, we provided some evidences that the involvement of LvMRE11 in innate immune against virus infection probably through regulating the IRF and Dorsal mediated antiviral pathways.


Asunto(s)
Penaeidae , Virus del Síndrome de la Mancha Blanca 1 , Secuencia de Aminoácidos , Animales , Antivirales , Proteínas de Artrópodos/química , Secuencia de Bases , Regulación de la Expresión Génica , Inmunidad Innata/genética , Quinasas Janus/genética , Factores de Transcripción STAT/genética , Transducción de Señal , Virus del Síndrome de la Mancha Blanca 1/fisiología
4.
Fish Shellfish Immunol ; 123: 248-256, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35301113

RESUMEN

MAPK and NF-κB pathways are important components of innate immune system in multicellular animals. In some model organisms, the MAP3-kinase TGF-beta-activated kinase 1 (TAK1) have been shown to regulate both MAPK and NF-κB pathways activation to tailor immune responses to pathogens or infections. However, this process is not fully understood in shrimp. In this study, we investigated the effect of TAK1 on MAPK and NF-κB activation in shrimp Litopenaeus vannamei following Vibrio parahaemolyticus infection. We found that shrimp TAK1 could activate c-Jun and Relish, the transcription factors of MAPK pathway and NF-κB pathway, respectively. Specifically, over-expression of shrimp TAK1 was able to strongly induce the activities of both AP-1 and NF-κB reporters. TAK1 was shown to bind several MAP2-kinases, including MKK4, MKK6 and MKK7, and induced their phosphorylations, the hallmarks for MAPK pathways activation. TAK1 knockdown in vivo also inhibited the nuclear translocation of c-Jun and Relish during V. parahaemolyticus infection. Accordingly, ectopic expression of shrimp TAK1 in Drosophila S2 cells increased the cleavage of co-expressed shrimp Relish, and induced the promoter activity of Relish targeted gene Diptericin (Dpt). Furthermore, knockdown of c-Jun and Relish enhanced the sensitivity of shrimp to V. parahaemolyticus infection. These findings indicated that shrimp TAK1 conferred antibacterial protection through regulating the activation of both MAPK pathway and NF-κB pathway, and suggested that the TAK1-MAPK/NF-κB axis could be a potential therapeutic target for enhancing antibacterial responses in crustaceans.


Asunto(s)
Proteínas de Drosophila , Penaeidae , Animales , Antibacterianos , Drosophila/metabolismo , Quinasas Quinasa Quinasa PAM/genética , FN-kappa B/metabolismo
5.
Front Immunol ; 11: 2110, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042123

RESUMEN

Tumor necrosis factor receptor (TNFR)-associated factors (TRAFs) are vital signaling adaptor proteins for the innate immune response and are involved in many important pathways, such as the NF-κB- and interferon regulatory factor (IRF)-activated signaling pathways. In this study, the TRAF3 ortholog from the shrimp Litopenaeus vannamei (LvTRAF3) was cloned and characterized. LvTRAF3 has a transcript of 3,865 bp, with an open reading frame (ORF) of 1,002 bp and encodes a polypeptide of 333 amino acids, including a conserved TRAF-C domain. The expression of LvTRAF3 in the intestine and hemocyte was up-regulated in response to poly (I:C) challenge and white spot syndrome virus (WSSV) infection. RNAi knockdown of LvTRAF3 in vivo significantly increased WSSV gene transcription, viral loads, and mortality in WSSV-infected shrimp. Next, we found that LvTRAF3 was not able to induce the activation of the NF-κB pathway, which was crucial for synthesis of antimicrobial peptides (AMPs), which mediate antiviral immunity. Specifically, in dual-luciferase reporter assays, LvTRAF3 could not activate several types of promoters with NF-κB binding sites, including those from WSSV genes (wsv069, wsv056, and wsv403), Drosophila AMPs or shrimp AMPs. Accordingly, the mRNA levels of shrimp AMPs did not significantly change when TRAF3 was knocked down during WSSV infection. Instead, we found that LvTRAF3 signaled through the IRF-Vago antiviral cascade. LvTRAF3 functioned upstream of LvIRF to regulate the expression of LvVago4 and LvVago5 during WSSV infection in vivo. Taken together, these data provide experimental evidence of the participation of LvTRAF3 in the host defense to WSSV through the activation of the IRF-Vago pathway but not the NF-κB pathway.


Asunto(s)
Citocinas/fisiología , Factores Reguladores del Interferón/fisiología , Penaeidae/inmunología , Transducción de Señal/fisiología , Factor 3 Asociado a Receptor de TNF/fisiología , Virus del Síndrome de la Mancha Blanca 1/fisiología , Secuencia de Aminoácidos , Animales , Acuicultura , Secuencia de Bases , Línea Celular , Hemocitos/efectos de los fármacos , FN-kappa B/metabolismo , Penaeidae/virología , Filogenia , Interferencia de ARN , ARN Bicatenario/genética , ARN Bicatenario/farmacología , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Factor 3 Asociado a Receptor de TNF/antagonistas & inhibidores , Factor 3 Asociado a Receptor de TNF/biosíntesis , Factor 3 Asociado a Receptor de TNF/genética , Replicación Viral
6.
Gigascience ; 6(7): 1-13, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28535200

RESUMEN

The blunt snout bream Megalobrama amblycephala is the economically most important cyprinid fish species. As an herbivore, it can be grown by eco-friendly and resource-conserving aquaculture. However, the large number of intermuscular bones in the trunk musculature is adverse to fish meat processing and consumption. As a first towards optimizing this aquatic livestock, we present a 1.116-Gb draft genome of M. amblycephala, with 779.54 Mb anchored on 24 linkage groups. Integrating spatiotemporal transcriptome analyses, we show that intermuscular bone is formed in the more basal teleosts by intramembranous ossification and may be involved in muscle contractibility and coordinating cellular events. Comparative analysis revealed that olfactory receptor genes, especially of the beta type, underwent an extensive expansion in herbivorous cyprinids, whereas the gene for the umami receptor T1R1 was specifically lost in M. amblycephala. The composition of gut microflora, which contributes to the herbivorous adaptation of M. amblycephala, was found to be similar to that of other herbivores. As a valuable resource for the improvement of M. amblycephala livestock, the draft genome sequence offers new insights into the development of intermuscular bone and herbivorous adaptation.


Asunto(s)
Adaptación Fisiológica , Cyprinidae/genética , Evolución Molecular , Genoma , Herbivoria/genética , Animales , Huesos/anatomía & histología , Cyprinidae/fisiología , Proteínas de Peces/genética , Microbioma Gastrointestinal , Receptores Odorantes/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...