Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37570838

RESUMEN

The rapid urbanization and industrialization in China have led to an urgent dilemma for controlling urban air pollution, including the intensified emission of gasoline vapor into the atmosphere. Herein, we selected highland barley straw as a raw material and KOH and tetramethylammonium hydroxide (TMAOH) as activators to synthesize nitrogen-doped layered porous carbon (K-thAC) by a three-step activation method. The obtained K-thAC materials had a high specific surface area, reaching 3119 m2/g. Dynamic adsorption experiments demonstrated a superior adsorption capacity of up to 501 mg/g (K-thAC-25) for gasoline vapor compared with other documented carbon adsorbents. Moreover, adjusting the ratio of raw materials with a series of active ingredients could further improve the pore properties of the obtained K-thACs and their adsorption performance for gasoline vapor. Furthermore, the K-thAC materials were also characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), synchronous thermogravimetry (STA), X-ray powder diffraction (XRD), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption tests. This study synthesized a novel plant-based material to treat gasoline vapor pollution efficiently.

2.
Sci Data ; 10(1): 563, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620343

RESUMEN

Crude oil pipelines are considered as the lifelines of energy industry. However, accidents of the pipelines can lead to severe public health and environmental concerns, in which greenhouse gas (GHG) emissions, primarily methane, are frequently overlooked. While previous studies examined fugitive emissions in normal operation of crude oil pipelines, emissions resulting from accidents were typically managed separately and were therefore not included in the emission account of oil systems. To bridge this knowledge gap, we employed a bottom-up approach to conducted the first-ever inventory of GHG emissions resulting from crude oil pipeline accidents in the United States at the state level from 1968 to 2020, and leveraged Monte Carlo simulation to estimate the associated uncertainties. Our results reveal that GHG emissions from accidents in gathering pipelines (~720,000 tCO2e) exceed those from transmission pipelines (~290,000 tCO2e), although significantly more accidents have occurred in transmission pipelines (6883 cases) than gathering pipelines (773 cases). Texas accounted for over 40% of total accident-related GHG emissions nationwide. Our study contributes to enhanced accuracy of the GHG account associated with crude oil transport and implementing the data-driven climate mitigation strategies.

3.
Sci Data ; 10(1): 282, 2023 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179408

RESUMEN

Natural gas is believed to be a critical transitional energy source. However, natural gas pipelines, once failed, will contribute to a large amount of greenhouse gas (GHG) emissions, including methane from uncontrolled natural gas venting and carbon dioxide from flared natural gas. However, the GHG emissions caused by pipeline incidents are not included in the regular inventories, making the counted GHG amount deviate from the reality. This study, for the first time, establishes an inventory framework for GHG emissions including all natural gas pipeline incidents in the two of the largest gas producers and consumers in North America (United States and Canada) from 1980s to 2021. The inventory comprises GHG emissions resulting from gathering and transmission pipeline incidents in a total of 24 states or regions in the United States between 1970 and 2021, local distribution pipeline incidents in 22 states or regions between 1970 and 2021, as well as natural gas pipeline incidents in a total of 7 provinces or regions in Canada between 1979 and 2021. These datasets can improve the accuracy of regular emission inventories by covering more emission sources in the United States and Canada and provide essential information for climate-oriented pipeline integrity management.

4.
ChemistryOpen ; 11(6): e202200088, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35642171

RESUMEN

A new racemic naphthyl-coumarin-based probe was found to bind covalently with amino acids in MeOH-KOH system and thereby generates distinct CD responses. The induced strong CD signals allowed quantitative enantiomeric excess analysis of amino acids and enantioselective sensing of amines and amino alcohols. The mechanism for the reaction of the coumarin-aldehyde probe with an amino acid was investigated by CD, UV-Vis, NMR, ESI-MS analyses and ECD calculation.


Asunto(s)
Aminas , Amino Alcoholes , Aminas/química , Aminoácidos/química , Amino Alcoholes/química , Cumarinas , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...