Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(35): 41793-41805, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37616220

RESUMEN

Colorless polyimides (CPIs) are a key substrate material for flexible organic light-emitting diode (OLED) displays and have attracted worldwide attention. Here, in this paper, the dispersion and interfacial interaction of aromatic polyamide (PA) in CPI (synthesized from 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) and 2,2'-bis(trifluoromethyl)benzidine (TFMB)) were significantly improved by in situ polymerization, and colorless transparent macromolecular polyimide composites (CPI-PAx) were successfully prepared by PA and CPI. By adjusting the ratio of PA to CPI, a high-performance engineering plastic with excellent film-forming properties was obtained. Molecular simulations confirmed the uniform distribution of PA in CPI and its interaction in polymers. In CPI-PAx, the CPI was locked by the PA chain, and numerous molecular chains were mutually entangled to form a hydrogen-bond network structure. Due to the strong interaction between the chains imparted by the hydrogen bonds of the PA, they do not slide under external forces and heating. In addition, the additive PA has excellent dimensional stability, thermal, and mechanical properties, and CPI has outstanding optical properties, so the synthesized CPI-PAx combines the comprehensive properties of PA and CPI. The CPI-PAx has excellent thermal and mechanical properties, with a thermal decomposition temperature of 499 °C, a glass transition temperature of 385 °C, a coefficient of thermal expansion of 0.8 ppm K-1, a tensile strength of 50.9 MPa, and an elastic modulus of 3.9 GPa. Particularly, CPI-PAx has a 90% transmittance in the visible region. These data prove that the strategy of combining PA and CPI by in situ polymerization is an effective method to circumvent the bottleneck of CPI in the current flexible window application, and this design strategy is universal.

2.
ACS Macro Lett ; 8(4): 454-459, 2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35651131

RESUMEN

Octahydro-2,5-pentalenediol (OPD), is a compelling citric acid-based bicyclic diol with excellent rigidity and thermal stability. Herein, a series of copolycarbonates (co-PCs) were synthesized, starting from OPD, 1,4-cyclohexanedimethanol (CHDM), and diphenyl carbonate (DPC). All polycarbonates are amorphous with glass transition temperatures increased when increasing the content in OPD units. Dynamic mechanical analysis (DMA) revealed the sub Tg ß-relaxations at low temperatures originating from the CHDM conformational transition, indicative of the possibility of impact-resistance. Morphological analysis of the fracture surfaces revealed the toughening mechanism under tensile was shear yielding of the matrix triggered by internal cavitation. The incorporation of OPD steadily increased the Young's modulus, from 482 to 757 MPa, with the OPD fraction increased from 0 to 30 mol %. As the OPD content further increased, a "ductile-to-brittle" transition occurred due to the low number-average molecular weight (Mn) and the low entangled strand density (high entanglement molecular weight).

3.
ACS Macro Lett ; 8(11): 1442-1448, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-35651189

RESUMEN

In this work, alicyclic (1R,3S)-1,2,2-trimethylcyclopentane-1,3-dimethanol (TCDM), derived from natural camphor, was copolymerized with linear α,ω-diacids, terephthalic acid (TPA), and 2,5-furandicarboxylic acid (FDCA), affording a series of polyesters with functional properties. 2D NMR spectroscopy revealed that the stereoconfiguration of TCDM was preserved after polymerization. The TCDM polyester based on TPA showed high thermostability, high Tg value (115 °C), high modulus (1.3 GPa), and high ultimate strength (29.8 MPa). The TCDM polyester based on 1,4-succinic acid exhibited excellent ductility and resilience. Lastly, the rigidity analysis based on van Krevelen's group contribution method, coupled with the comparisons between TCDM- and sugar-based polyesters, confirmed that TCDM is a highly reactive and rigid diol. Results indicate that TCDM polyesters are suitable for a wide range of applications, including hot-filled containers and transparent packaging materials. This work addresses some critical needs for high performance biopolymers such as achieving high Tg values, high thermostability, and high transparency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...