Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732739

RESUMEN

Developing high-performance and low-cost protein purification materials is of great importance to meet the demands for highly purified proteins in biotechnological industries. Herein, a facile strategy was developed to design and construct high-efficiency protein absorption and separation media by combining aerogels' molding techniques and impregnation processes. Poly (ethylene-co-vinyl alcohol) (EVOH) nanofibrous aerogels (NFAs) were modified by grafting butane tetracarboxylic acid (BTCA) over them in situ. This modification was carried out using polyphosphoric acid as a catalyst. The resulting EVOH/BTCA NFAs exhibited favorable comprehensive properties. Benefiting from the highly interconnected porous structure, good underwater compressive properties, and abundant absorption ligands, the obtained EVOH/BTCA NFAs possessed a high static absorption capacity of 1082.13 mg/g to lysozyme and a short absorption equilibrium time of about 6 h. A high saturated dynamic absorption capacity for lysozyme (716.85 mg/g) was also realized solely by gravity. Furthermore, EVOH/BTCA NFAs displayed excellent reusability, good acid and alkaline resistance, and unique absorption selectivity performance. The successful synthesis of such aerogels can provide a potential candidate for next-generation protein absorbents for bio-separation and purification engineering.

2.
Polymers (Basel) ; 16(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38611248

RESUMEN

The development of nontoxic and efficient antifreeze agents for organ cryopreservation is crucial. However, the research remains highly challenging. In this study, we designed and synthesized a series of peptoid oligomers using the solid-phase submonomer synthesis method by mimicking the amphiphilic structures of antifreeze proteins (AFPs). The obtained peptoid oligomers showed excellent antifreeze properties, reducing the ice crystal growth rate and inhibiting ice recrystallization. The effects of the hydrophobicity and sequence of the peptoid side chains were also studied to reveal the structure-property relationship. The prepared peptoid oligomers were detected as non-cytotoxic and considered to be useful in the biological field. We hope that the peptoid oligomers presented in this study can provide effective strategies for the design of biological cryoprotectants for organ preservation in the future.

3.
Polymers (Basel) ; 16(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675001

RESUMEN

Polypeptoids with well-designed structures have the ability to self-assemble into nanomaterials, which have wide potential applications. In this study, a series of diblock copolypeptoids were synthesized via ring-opening polymerization followed by click chemistry and exhibited both temperature and pH stimulation responsiveness. Under specific temperature and pH conditions, the responsive blocks in the copolypeptoids became hydrophobic and aggregated to form micelles. The self-assembly process was monitored using the UV-Vis and DLS methods, which suggested the reversible transition of free molecules to micelles and bigger aggregates upon instituting temperature and pH changes. By altering the length and proportion of each block, the copolypeptoids displayed varying self-assembly characteristics, and the transition temperature could be tuned. With good biocompatibility, stability, and no cytotoxicity, the polypeptoids reported in this study are expected to be applied as bionanomaterials in fields including drug delivery, tissue engineering, and intelligent biosensing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA