Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39124444

RESUMEN

Focusing on the bending wave characteristic of plate-shell structures, this paper derives the complex band curve of piezoelectric phononic crystal based on the equilibrium differential equation in the plane stress state using COMSOL PDE 6.2. To ascertain the computational model's accuracy, the computed complex band curve is then cross-validated against real band curves obtained through coupling simulations. Utilizing this model, this paper investigates the impact of structural and electrical parameters on the bandgap range and the attenuation coefficient in the bandgap. Results indicate that the larger surface areas of the piezoelectric sheet correspond to lower center bands in the bandgap, while increased thickness widens the attenuation coefficient range with increased peak values. Furthermore, the influence of inductance on the bandgap conforms to the variation law of the electrical LC resonance frequency, and increased resistance widens the attenuation coefficient range albeit with decreased peak values. The incorporation of negative capacitance significantly expands the low-frequency bandgap range. Visualized through vibration transfer simulations, the vibration-damping ability of the piezoelectric phononic crystal is demonstrated. Experimentally, this paper finds that two propagation modes of bending waves (symmetric and anti-symmetric) result in variable voltage amplitudes, and the average vibration of the system decreases by 4-5 dB within the range of 1710-1990 Hz. The comparison between experimental and model-generated data confirms the accuracy of the attenuation coefficient calculation model. This convergence between experimental and computational results emphasizes the validity and usefulness of the proposed model, and this paper provides theoretical support for the application of piezoelectric phononic crystals in the field of plate-shell vibration reduction.

2.
Curr Microbiol ; 81(3): 78, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281277

RESUMEN

Two yeast strains designated as 20-27-1 and 20-28 were isolated from the fruiting bodies of Tricholoma gambosum and Marasmius maximus, respectively, which were collected in Wudaogou, Weichang county, Chengde area, Hebei Province, China. The multi-locus analysis of the sequences of the rDNA ITS, D1/D2 LSU, and SSU regions, together with partial sequences of two protein-coding genes RPB1 and TEF1 indicates that the two strains are closely related to Nakazawaea ernobii and Nakazawaea holstii, showing the similarity values of 99.3-98.7%, 97.2-97.1%, 91.9-92.5%, and 84.6% in D1/D2 LSU, ITS, TEF1, and RPB1, respectively. Physiologically, the two strains are different from N. ernobii and N. holstii in the assimilation of melibiose, inulin, and DL-lactic acid. Both the phenotypic and phylogenetic analyses indicate that those two strains represent a novel species in the genus Nakazawaea, for which the name Nakazawaea tricholomae f.a., sp. nov. (Fungal Names: FN 571492) is proposed.


Asunto(s)
Agaricales , Saccharomycetales , Agaricales/genética , Filogenia , ADN Espaciador Ribosómico/genética , ADN de Hongos/genética , Saccharomycetales/genética , Pichia/genética , China , Análisis de Secuencia de ADN , Técnicas de Tipificación Micológica
3.
RSC Adv ; 13(35): 24385-24392, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37583670

RESUMEN

To alleviate the depletion of lithium resources and improve battery capacity and rate capacity, the development of aqueous zinc-ion batteries (AZIBs) is crucial. The open channels monoclinic structure Li3V2(PO4)3 is conducive to the transfer and diffusion of guest ions, making it a promising cathode material for AZIBs. Therefore, in this study, nanoneedles and particles Li3V2(PO4)3 cathode materials for AZIBs were prepared by a hydrothermal assisted sol-gel method, and the effect of synthesized pH values was studied. XRD results show that all samples had the monoclinic structure, and the Li3V2(PO4)3 sample prepared at pH = 7 exhibits (LVP-pH7) the highest peak tips and narrowest peak widths. SEM images demonstrate that all samples have the morphology character of randomly oriented needles and irregular particles, with the LVP-pH7 sample having more needle-like particles that contribute to ion diffusion. EDS results show uniform distribution of P, V, and O elements in the LVP-pH7 sample, and no obvious aggregation phenomenon is observed. Electrochemical tests have shown that the LVP-pH7 sample exhibits excellent cycling performance (97.37% after 50 cycles at 200 mA g-1) and rate ability compared to other samples. The CV test results showed that compared with other samples, the LVP-pH7 sample had the most excellent ionic diffusion coefficient (2.44 × 10-12 cm2 s-1). Additionally, the Rct of LVP-pH7 is the lowest (319.83 Ω) according to the findings of EIS and Nyquist plot fitting, showing a decreased charge transfer resistance and raising the kinetics of the reaction.

4.
Front Chem ; 8: 729, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330350

RESUMEN

Well-dispersed Li-rich Mn-based 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 nanoparticles with diameter ranging from 50 to 100 nm are synthesized by a hydrothermal method in the presence of N-hexyl pyridinium tetrafluoroborate ionic liquid ([HPy][BF4]). The microstructures and electrochemical performance of the prepared cathode materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical measurements. The XRD results show that the sample prepared by ionic-liquid-assisted hydrothermal method exhibits a typical Li-rich Mn-based pure phase and lower cation mixing. SEM and TEM images indicate that the extent of particle agglomeration of the ionic-liquid-assisted sample is lower compared to the traditional hydrothermal sample. Electrochemical test results indicate that the materials synthesized by ionic-liquid-assisted hydrothermal method exhibit better rate capability and cyclability. Besides, electrochemical impedance spectroscopy (EIS) results suggest that the charge transfer resistance of 0.5Li2MnO3· 0.5LiNi0.5Mn0.5O2 synthesized by ionic-liquid-assisted hydrothermal method is much lower, which enhances the reaction kinetics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...