Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Protein Cell ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311688

RESUMEN

Deactivation of the mitochondrial pyruvate dehydrogenase complex (PDC) is important for the metabolic switching of cancer cell from oxidative phosphorylation to aerobic glycolysis. Studies examining PDC activity regulation have mainly focused on the phosphorylation of pyruvate dehydrogenase (PDH, E1), leaving other post-translational modifications (PTMs) largely unexplored. Here, we demonstrate that the acetylation of Lys 488 of pyruvate dehydrogenase complex component X (PDHX) commonly occurs in hepatocellular carcinoma (HCC), disrupting PDC assembly and contributing to lactate-driven epigenetic control of gene expression. PDHX, an E3-binding protein (E3BP) in the PDC, is acetylated by the p300 at Lys 488, impeding the interaction between PDHX and dihydrolipoyl transacetylase (DLAT, E2), thereby disrupting PDC assembly to inhibit its activation. PDC disruption results in the conversion of most glucose to lactate, contributing to the aerobic glycolysis and H3K56 lactylation-mediated gene expression, facilitating tumor progression. These findings highlight a previously unrecognized role of PDHX acetylation in regulating PDC assembly and activity, linking PDHX Lys 488 acetylation and histone lactylation during HCC progression and providing a potential biomarker and therapeutic target for further development.

2.
Mol Cell ; 84(3): 538-551.e7, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38176415

RESUMEN

Metabolic reprogramming is an important feature of cancers that has been closely linked to post-translational protein modification (PTM). Lysine succinylation is a recently identified PTM involved in regulating protein functions, whereas its regulatory mechanism and possible roles in tumor progression remain unclear. Here, we show that OXCT1, an enzyme catalyzing ketone body oxidation, functions as a lysine succinyltransferase to contribute to tumor progression. Mechanistically, we find that OXCT1 functions as a succinyltransferase, with residue G424 essential for this activity. We also identified serine beta-lactamase-like protein (LACTB) as a main target of OXCT1-mediated succinylation. Extensive succinylation of LACTB K284 inhibits its proteolytic activity, resulting in increased mitochondrial membrane potential and respiration, ultimately leading to hepatocellular carcinoma (HCC) progression. In summary, this study establishes lysine succinyltransferase function of OXCT1 and highlights a link between HCC prognosis and LACTB K284 succinylation, suggesting a potentially valuable biomarker and therapeutic target for further development.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , beta-Lactamasas , Humanos , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Lisina/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Procesamiento Proteico-Postraduccional
3.
Nat Immunol ; 25(3): 483-495, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38177283

RESUMEN

Tumor cells and surrounding immune cells undergo metabolic reprogramming, leading to an acidic tumor microenvironment. However, it is unclear how tumor cells adapt to this acidic stress during tumor progression. Here we show that carnosine, a mobile buffering metabolite that accumulates under hypoxia in tumor cells, regulates intracellular pH homeostasis and drives lysosome-dependent tumor immune evasion. A previously unrecognized isoform of carnosine synthase, CARNS2, promotes carnosine synthesis under hypoxia. Carnosine maintains intracellular pH (pHi) homeostasis by functioning as a mobile proton carrier to accelerate cytosolic H+ mobility and release, which in turn controls lysosomal subcellular distribution, acidification and activity. Furthermore, by maintaining lysosomal activity, carnosine facilitates nuclear transcription factor X-box binding 1 (NFX1) degradation, triggering galectin-9 and T-cell-mediated immune escape and tumorigenesis. These findings indicate an unconventional mechanism for pHi regulation in cancer cells and demonstrate how lysosome contributes to immune evasion, thus providing a basis for development of combined therapeutic strategies against hepatocellular carcinoma that exploit disrupted pHi homeostasis with immune checkpoint blockade.


Asunto(s)
Carcinoma Hepatocelular , Carnosina , Neoplasias Hepáticas , Humanos , Homeostasis , Lisosomas , Hipoxia , Concentración de Iones de Hidrógeno , Microambiente Tumoral
4.
Acta Biochim Biophys Sin (Shanghai) ; 55(9): 1370-1379, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37580952

RESUMEN

Tumor metabolic reprogramming and epigenetic modification work together to promote tumorigenesis and development. Protein lysine acetylation, which affects a variety of biological functions of proteins, plays an important role under physiological and pathological conditions. Here, through immunoprecipitation and mass spectrum data, we show that phosphoglycerate mutase 5 (PGAM5) deacetylation enhances malic enzyme 1 (ME1) metabolic enzyme activity to promote lipid synthesis and proliferation of liver cancer cells. Mechanistically, we demonstrate that the deacetylase SIRT2 mediates PGAM5 deacetylation to activate ME1 activity, leading to ME1 dephosphorylation, subsequent lipid accumulation and the proliferation of liver cancer cells. Taken together, our study establishes an important role for the SIRT2-PGAM5-ME1 axis in the proliferation of liver cancer cells, suggesting a potential innovative cancer therapy.


Asunto(s)
Neoplasias Hepáticas , Sirtuina 2 , Humanos , Sirtuina 2/genética , Sirtuina 2/metabolismo , Metabolismo de los Lípidos , Fosfoglicerato Mutasa/genética , Fosfoglicerato Mutasa/metabolismo , Proliferación Celular , Lípidos , Acetilación , Fosfoproteínas Fosfatasas/metabolismo , Proteínas Mitocondriales/metabolismo
5.
EMBO J ; 41(23): e111550, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36314841

RESUMEN

Phosphoglycerate dehydrogenase (PHGDH) is a key serine biosynthesis enzyme whose aberrant expression promotes various types of tumors. Recently, PHGDH has been found to have some non-canonical functions beyond serine biosynthesis, but its specific mechanisms in tumorigenesis remain unclear. Here, we show that PHGDH localizes to the inner mitochondrial membrane and promotes the translation of mitochondrial DNA (mtDNA)-encoded proteins in liver cancer cells. Mechanistically, we demonstrate that mitochondrial PHGDH directly interacts with adenine nucleotide translocase 2 (ANT2) and then recruits mitochondrial elongation factor G2 (mtEFG2) to promote mitochondrial ribosome recycling efficiency, thereby promoting mtDNA-encoded protein expression and subsequent mitochondrial respiration. Moreover, we show that treatment with a mitochondrial translation inhibitor or depletion of mtEFG2 diminishes PHGDH-mediated tumor growth. Collectively, our findings uncover a previously unappreciated function of PHGDH in tumorigenesis acting via promotion of mitochondrial translation and bioenergetics.


Asunto(s)
Neoplasias Hepáticas , Fosfoglicerato-Deshidrogenasa , Humanos , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Línea Celular Tumoral , Serina , Neoplasias Hepáticas/genética , Carcinogénesis , ADN Mitocondrial
6.
EMBO J ; 40(21): e108028, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34472622

RESUMEN

Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) is an important cellular metabolite-sensing enzyme that can directly sense changes not only in ATP but also in metabolites associated with carbohydrates and fatty acids. However, less is known about whether and how AMPK senses variations in cellular amino acids. Here, we show that cysteine deficiency significantly triggers calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2)-mediated activation of AMPK. In addition, we found that CaMKK2 directly associates with cysteinyl-tRNA synthetase (CARS), which then binds to AMPKγ2 under cysteine deficiency to activate AMPK. Interestingly, we discovered that cysteine inhibits the binding of CARS to AMPKγ2, and thus, under cysteine deficiency conditions wherein the inhibitory effect of cysteine is abrogated, CARS mediates the binding of AMPK to CaMKK2, resulting in the phosphorylation and activation of AMPK by CaMKK2. Importantly, we demonstrate that blocking AMPK activation leads to cell death under cysteine-deficient conditions. In summary, our study is the first to show that CARS senses the absence of cysteine and activates AMPK through the cysteine-CARS-CaMKK2-AMPKγ2 axis, a novel adaptation strategy for cell survival under nutrient deprivation conditions.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Adaptación Fisiológica/genética , Aminoacil-ARNt Sintetasas/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Cisteína/deficiencia , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Adenosina Trifosfato/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Línea Celular Tumoral , Supervivencia Celular/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Transducción de Señal
7.
Nat Metab ; 2(3): 256-269, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32694775

RESUMEN

The transcriptional role of cMyc (or Myc) in tumorigenesis is well appreciated; however, it remains to be fully established how extensively Myc is involved in the epigenetic regulation of gene expression. Here, we show that by deactivating succinate dehydrogenase complex subunit A (SDHA) via acetylation, Myc triggers a regulatory cascade in cancer cells that leads to H3K4me3 activation and gene expression. We find that Myc facilitates the acetylation-dependent deactivation of SDHA by activating the SKP2-mediated degradation of SIRT3 deacetylase. We further demonstrate that Myc inhibition of SDH-complex activity leads to cellular succinate accumulation, which triggers H3K4me3 activation and tumour-specific gene expression. We demonstrate that acetylated SDHA at Lys 335 contributes to tumour growth in vitro and in vivo, and we confirm increased tumorigenesis in clinical samples. This study illustrates a link between acetylation-dependent SDHA deactivation and Myc-driven epigenetic regulation of gene expression, which is critical for cancer progression.


Asunto(s)
Transformación Celular Neoplásica , Complejo II de Transporte de Electrones/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Acetilación , Ciclo del Ácido Cítrico , Complejo II de Transporte de Electrones/genética , Epigénesis Genética , Células HEK293 , Humanos , Ácido Succínico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...