Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(8): e30086, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38699746

RESUMEN

Background: Heart failure (HF) and idiopathic pulmonary fibrosis (IPF) are global public health concerns. The relationship between HF and IPF is widely acknowledged. However, the interaction mechanisms between these two diseases remain unclear, and early diagnosis is particularly difficult. Through the integration of bioinformatics and machine learning, our work aims to investigate common gene features, putative molecular causes, and prospective diagnostic indicators of IPF and HF. Methods: The Gene Expression Omnibus (GEO) database provided the RNA-seq datasets for HF and IPF. Utilizing a weighted gene co-expression network analysis (WGCNA), possible genes linked to HF and IPF were found. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were then employed to analyze the genes that were shared by HF and IPF. Using the cytoHubba and iRegulon algorithms, a competitive endogenous RNA (ceRNA) network was built based on seven basic diagnostic indicators. Additionally, hub genes were identified using machine learning approaches. External datasets were used to validate the findings. Lastly, the association between the number of immune cells in tissues and the discovered genes was estimated using the CIBERSORT method. Results: In total, 63 shared genes were identified between HF- and IPF-related modules using WGCNA. Extracellular matrix (ECM)/structure organization, ECM-receptor interactions, focal, and protein digestion and absorption, were shown to be the most enrichment categories in GO and KEGG enrichment analysis of common genes. Furthermore, a total of seven fundamental genes, including COL1A1, COL3A1, THBS2, CCND1, ASPN, FAP, and S100A12, were recognized as pivotal genes implicated in the shared pathophysiological pathways of HF and IPF, and TCF12 may be the most important regulatory transcription factor. Two characteristic molecules, CCND1 and NAP1L3, were selected as potential diagnostic markers for HF and IPF, respectively, using a support vector machine-recursive feature elimination (SVM-RFE) model. Furthermore, the development of diseases and diagnostic markers may be associated with immune cells at varying degrees. Conclusions: This study demonstrated that ECM/structure organisation, ECM-receptor interaction, focal adhesion, and protein digestion and absorption, are common pathogeneses of IPF and HF. Additionally, CCND1 and NAP1L3 were identified as potential diagnostic biomarkers for both HF and IPF. The results of our study contribute to the comprehension of the co-pathogenesis of HF and IPF at the genetic level and offer potential biological indicators for the early detection of both conditions.

2.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38271484

RESUMEN

Accurate approaches for quantifying muscle fibers are essential in biomedical research and meat production. In this study, we address the limitations of existing approaches for hematoxylin and eosin-stained muscle fibers by manually and semiautomatically labeling over 660 000 muscle fibers to create a large dataset. Subsequently, an automated image segmentation and quantification tool named MyoV is designed using mask regions with convolutional neural networks and a residual network and feature pyramid network as the backbone network. This design enables the tool to allow muscle fiber processing with different sizes and ages. MyoV, which achieves impressive detection rates of 0.93-0.96 and precision levels of 0.91-0.97, exhibits a superior performance in quantification, surpassing both manual methods and commonly employed algorithms and software, particularly for whole slide images (WSIs). Moreover, MyoV is proven as a powerful and suitable tool for various species with different muscle development, including mice, which are a crucial model for muscle disease diagnosis, and agricultural animals, which are a significant meat source for humans. Finally, we integrate this tool into visualization software with functions, such as segmentation, area determination and automatic labeling, allowing seamless processing for over 400 000 muscle fibers within a WSI, eliminating the model adjustment and providing researchers with an easy-to-use visual interface to browse functional options and realize muscle fiber quantification from WSIs.


Asunto(s)
Aprendizaje Profundo , Humanos , Animales , Ratones , Procesamiento de Imagen Asistido por Computador/métodos , Fibras Musculares Esqueléticas , Redes Neurales de la Computación , Algoritmos
3.
J Pediatr Nurs ; 74: 1-9, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37979333

RESUMEN

PURPOSE: This study aimed to examine the relationship of stress, mental resilience, and coping style, and the mediation effect of mental resilience between stress and coping style among parents of children with cochlear implants. DESIGN AND METHODS: A cross-sectional design was used. A total of 231 parents of children with cochlear implants were recruited from May 1, 2022, to February 28, 2023 at a comprehensive tertiary hospital and a cochlear implant rehabilitation center in China. Parenting Stress Index-Short Form (PSI-SF), the Connor-Davidson Resilience Scale (CD-RISC) and the Simplified Coping Style Questionnaire(SCSQ) were used to measure stress, mental resilience, and coping style respectively. RESULTS: The mean score observed for PSI-SF, CD-RISC, active coping, and passive coping was 87.85 ± 24.59, 55.63 ± 16.11, 21.36 ± 6.73, and 9.05 ± 4.52, respectively. Mental resilience was a significant mediator explaining the effect of stress on active coping (ß = -0.294; 95% bias-corrected bootstrap CI: -0.358 to -0.164). CONCLUSIONS: Attention should be paid to the status of stress, mental resilience and coping style in parents of children with cochlear implants. Mental resilience mediated stress and coping style. PRACTICE IMPLICATIONS: This study provides a theoretical basis for establishing an active coping care program for parents of children with cochlear implants. There is a need to identify strategies that can help increase the level of mental resilience of parents of children with cochlear implants and more subjective and objective social support should be provided to reduce their stress and to encourage active coping style.


Asunto(s)
Implantes Cocleares , Pruebas Psicológicas , Resiliencia Psicológica , Niño , Humanos , Adaptación Psicológica , Estudios Transversales , Padres
4.
Arterioscler Thromb Vasc Biol ; 43(6): 1015-1030, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37051931

RESUMEN

BACKGROUND: AGK (acylglycerol kinase) was first identified as a mitochondrial transmembrane protein that exhibits a lipid kinase function. Recent studies have established that AGK promotes cancer growth and metastasis, enhances glycolytic metabolism and function fitness of CD8+ T cells, or regulates megakaryocyte differentiation. However, the role of AGK in platelet activation and arterial thrombosis remains to be elaborated. METHODS: We performed hematologic analysis using automated hematology analyzer and investigated platelets morphology by transmission electron microscope. We explored the role of AGK in platelet activation and arterial thrombosis utilizing transgenic mice, platelet functional experiments in vitro, and thrombosis models in vivo. We revealed the regulation effect of AGK on Talin-1 by coimmunoprecipitation, mass spectrometry, immunofluorescence, and Western blot. We tested the role of AGK on lipid synthesis of phosphatidic acid/lysophosphatidic acid and thrombin generation by specific Elisa kits. RESULTS: In this study, we found that AGK depletion or AGK mutation had no effect on the platelet average volumes, the platelet microstructures, or the expression levels of the major platelet membrane receptors. However, AGK deficiency or AGK mutation conspicuously decreased multiple aspects of platelet activation, including agonists-induced platelet aggregation, granules secretion, JON/A binding, spreading on Fg (fibrinogen), and clot retraction. AGK deficiency or AGK mutation also obviously delayed arterial thrombus formation but had no effect on tail bleeding time and platelet procoagulant function. Mechanistic investigation revealed that AGK may promote Talin-1Ser425 phosphorylation and affect the αIIbß3-mediated bidirectional signaling pathway. However, AGK does not affect lipid synthesis of phosphatidic acid/lysophosphatidic acid in platelets. CONCLUSIONS: AGK, through its kinase activity, potentiates platelet activation and arterial thrombosis by promoting Talin-1 Ser425 phosphorylation and affecting the αIIbß3-mediated bidirectional signaling pathway.


Asunto(s)
Talina , Trombosis , Animales , Ratones , Plaquetas/metabolismo , Linfocitos T CD8-positivos/metabolismo , Ratones Transgénicos , Ácidos Fosfatidicos/metabolismo , Ácidos Fosfatidicos/farmacología , Activación Plaquetaria , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Transducción de Señal , Talina/genética , Talina/metabolismo , Talina/farmacología , Trombosis/patología
5.
Front Cell Dev Biol ; 9: 782427, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34966742

RESUMEN

5-Hydroxymethylfurfural (5-HMF) is a common reaction product during heat processing and the preparation of many types of foods and Traditional Chinese Medicine formulations. The aim of this study was to evaluate the protective effect of 5-HMF on endotoxin-induced acute lung injury (ALI) and the underlying mechanisms. Our findings indicate that 5-HMF attenuated lipopolysaccharide (LPS)-induced ALI in mice by mitigating alveolar destruction, neutrophil infiltration and the release of inflammatory cytokines. Furthermore, the activation of macrophages and human monocytes in response to LPS was remarkably suppressed by 5-HMF in vitro through inhibiting the NF-κB signaling pathway, NLRP3 inflammasome activation and endoplasmic reticulum (ER) stress. The inhibitory effect of 5-HMF on NLRP3 inflammasome was reversed by overexpressing ATF4 or CHOP, indicating the involvement of ER stress in the negative regulation of 5-HMF on NLRP3 inflammasome-mediated inflammation. Consistent with this, the ameliorative effect of 5-HMF on in vivo pulmonary dysfunction were reversed by the ER stress inducer tunicamycin. In conclusion, our findings elucidate the anti-inflammatory and protective efficacy of 5-HMF in LPS-induced acute lung injury, and also demonstrate the key mechanism of its action against NLRP3 inflammasome-related inflammatory disorders via the inhibition of ER stress.

6.
ACS Omega ; 6(42): 28019-28030, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34723002

RESUMEN

5-Hydroxymethylfurfural (5-HMF) exists in a wide range of sugar-rich foods and traditional Chinese medicines. The role of 5-HMF in antiviral innate immunity and its mechanism have not been reported previously. In this study, we reveal for the first time that 5-HMF upregulates the production of retinoic acid-inducible gene I (RIG-I)-mediated type I interferon (IFN) as a response to viral infection. IFN-ß and IFN-stimulated chemokine gene expressions induced by the vesicular stomatitis virus (VSV) are upregulated in RAW264.7 cells and primary peritoneal macrophages after treatment with 5-HMF, a natural product that appears to inhibit the efficiency of viral replication. Meanwhile, 5-HMF-pretreated mice show enhanced innate antiviral immunity, increased serum levels of IFN-ß, and reduced morbidity and viral loads upon infection with VSV. Thus, 5-HMF can be seen to have a positive effect on enhancing type I IFN production. Mechanistically, 5-HMF upregulates the expression of RIG-I in macrophages, resulting in an acceleration of the RIG-I signaling pathway activation. Additionally, STAT1 and STAT2 phosphorylations, along with the expression of IFN-stimulated chemokine genes induced by IFN-α/ß, were also enhanced in macrophages cotreated with 5-HMF. In summary, these findings indicate that 5-HMF not only can induce type I IFN production but also can enhance IFN-JAK/STAT signaling, leading to a novel immunomodulatory mechanism against viral infection. In conclusion, our study reveals a previously unrecognized effect of 5-HMF in the antiviral innate immune response and suggests new potential of utilizing 5-HMF for controlling viral infection.

7.
Front Cardiovasc Med ; 8: 736059, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631833

RESUMEN

The level of triglyceride (TG) ≥ 2. 3 mmol/L is suggestive of marked hypertriglyceridemia (HTG) and requires treatment with a triglyceride-lowering agent in high-risk and very high-risk patients as recommended by the 2019 ESC/EAS guidelines for the management of dyslipidemia. However, the optimal cutoff value required to diagnose non-fasting HTG that corresponds to the fasting goal level of 2.3 mmol/L in Chinese subjects is unknown. This study enrolled 602 cardiology inpatients. Blood lipid levels, including calculated non-high-density lipoprotein cholesterol (non-HDL-C) and remnant cholesterol (RC), were measured at 0, 2, and 4 h after a daily Chinese breakfast. Of these, 482 inpatients had TG levels of <2.3 mmol/L (CON group) and 120 inpatients had TG levels of ≥2.3 mmol/L (HTG group). Receiver operating characteristic (ROC) curve analysis was used to determine the cutoff values for postprandial HTG that corresponded to a target fasting level of 2.3 mmol/L. Marked hypertriglyceridemia (≥2.3 mmol/L) was found in 120 (19.9%) patients in this study population. The levels of non-fasting TG and RC increased significantly in both groups and reached the peak at 4 h after a daily meal, especially in the HTG group (p < 0.05). The optimal cutoff value of TG at 4 h, which corresponds to fasting TG of ≥2.3 mmol/L, that can be used to predict HTG, was 2.66 mmol/L. According to the new non-fasting cutoff value, the incidence of non-fasting HTG is close to its fasting level. In summary, this is the first study to determine the non-fasting cutoff value that corresponds to a fasting TG of ≥2.3 mmol/L in Chinese patients. Additionally, 2.66 mmol/l at 4 h after a daily meal could be an appropriate cutoff value that can be used to detect non-fasting marked HTG in Chinese subjects.

8.
Dentomaxillofac Radiol ; 50(7): 20200384, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34233493

RESUMEN

OBJECTIVE: To screen the radiomic features of simple bone cysts of the jaws and explore the potential application of radiomics in pre-operative diagnosis of jaw simple bone cysts. METHODS: The investigators designed and implemented a case-control study. 19 patients with simple bone cysts who were admitted to the Department of Maxillofacial Surgery, Sun Yat-sen University Affiliated Stomatology Hospital from 2013 to 2019 were included in this study. Their clinical data and cone-beam computed tomography (CBCT) images were examined. The control group consisted of patients with odontogenic keratocyst. CBCT imaging features were analyzed and compared between the patient and control groups. RESULTS: Overall, 10,323 image features were extracted through feature analysis. A subset of 25 radiomic features obtained after feature selection were analyzed further. These 25 features were significantly different between the 2 groups (p < 0.05). The absolute value of correlation coefficient was 0.487-0.775. Gray-level co-occurrence matrix (GLCM) contrast, neighborhood gray tone difference matrix (NGTDM) contrast, and GLCM variance were the features with the highest correlation coefficients. CONCLUSIONS: Pre-operative radiomics analysis showed the differences between simple bone cysts and odontogenic keratocysts, can help to diagnose simple bone cysts. Three specific texture features-GLCM contrast, NGTDM contrast, and GLCM variance-may be the characteristic imaging features of simple bone cysts of the jaw.


Asunto(s)
Quistes Óseos , Quistes Odontogénicos , Quistes Óseos/diagnóstico por imagen , Estudios de Casos y Controles , Tomografía Computarizada de Haz Cónico , Humanos , Maxilares , Quistes Odontogénicos/diagnóstico por imagen
9.
Front Genet ; 10: 564, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31316543

RESUMEN

Cardiac fibrosis is the pathological consequence of fibroblast proliferation and fibroblast-to-myofibroblast transition. As a new class of endogenous non-coding RNAs, circular RNAs (circRNAs) have been identified in many cardiovascular diseases including fibrosis, generally acting as microRNA (miRNA) sponges. Here, we report that the expression of circRNA-circNFIB was decreased in mice post-myocardial infarction heart samples, as well as in primary adult cardiac fibroblasts treated with TGF-ß. Forced expression of circNFIB decreased cell proliferation in both NIH/3T3 cells and primary adult fibroblasts as evidenced by EdU incorporation. Conversely, inhibition of circNFIB promoted adult fibroblast proliferation. Furthermore, circNFIB was identified as a miR-433 endogenous sponge. Overexpression of circNFIB could attenuate pro-proliferative effects induced by the miR-433 mimic while inhibition of circNFIB exhibited opposite results. Finally, upregulation of circNFIB also reversed the expression levels of target genes and downstream signaling pathways of miR-433. In conclusion, circNFIB is critical for protection against cardiac fibrosis. The circNFIB-miR-433 axis may represent a novel therapeutic approach for treatment of fibrotic diseases.

10.
Org Biomol Chem ; 17(22): 5509-5513, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31112197

RESUMEN

A copper nitrate-mediated [2 + 2 + 1] cycloaddition reaction was developed for the expedient synthesis of pharmacologically interesting 3-aryl substituted isoxazolines and isoxazoles through C[double bond, length as m-dash]C bond cleavage. Copper nitrate is employed as a reaction promoter and precursor of nitrile oxides. The given approach features a new mode of cycloaddition from olefinic azlactones, copper nitrate and unsaturated compounds with wide substrate scope, good functional group tolerance and operational simplicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA