Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Am J Hypertens ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761040

RESUMEN

BACKGROUND: Hypertension is a risk factor for atrial fibrillation (AF), and brain and muscle arnt-like protein 1 (Bmal1) regulate circadian blood pressure and is implicated in several fibrotic disorders. Our hypothesis that Bmal1 inhibits atrial fibrosis and susceptibility to AF in salt-sensitive hypertension (SSHT) and our study provide a new target for the pathogenesis of AF induced by hypertension. METHODS: The study involved 7-week-old male Dahl salt-sensitive that were fed either a high-salt diet (8% NaCl; DSH group) or a normal diet (0.3% NaCl; DSN group). An experimental model was used to measure systolic blood pressure (SBP), left atrial ejection fraction (LAEF), left atrial end-volume index (LAEVI), left atrial index (LAFI), AF inducibility, AF duration, and atrial fibrosis pathological examination and the expression of Baml1 and fibrosis-related proteins (TNF-α and α-SMA) in left atrial tissue. RESULTS: DSH increased TNF-α and α-SMA expression in atrial tissue, level of SBP and LAESVI, atrial fibrosis, AF induction rate and AF duration, and decreased Bmal1 expression in atrial tissue, circadian rhythm of hypertension and level of LAEF and LAFI. Our results also showed that the degree of atrial fibrosis was negatively correlated with Bmal1 expression, but positively correlated with the expression of TNF-α and α-SMA. CONCLUSIONS: We demonstrated that a high-salt diet leads to circadian changes in hypertension due to reduction Bmal1 expression, which plays a crucial role in atrial fibrosis and increased susceptibility to AF in SSHT rats.

2.
Indian J Microbiol ; 64(1): 82-91, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38468732

RESUMEN

Children obesity is a serious public health problem drawing much attention around the world. Recent research indicated that gut microbiota plays a vital role in children obesity, and disturbed gut microbiota is a prominent characteristic of obese children. Diet and exercise are efficient intervention for weight loss in obesity children, however, how the gut microbiota is modulated which remains largely unknown. To characterize the feature of gut microbiota in obese children and explore the effect of dietary and exercise on gut microbiota in simple obese children, 107 healthy children and 86 obese children were recruited, and among of the obese children 39 received the dietary-exercise combined weight loss intervention (DEI). The gut microbiota composition was detected by the 16S amplicon sequencing method. The gut microbiota composition was significantly different between obese children and the healthy cohort, and DEI significantly reduced the body weight and ameliorated the gut microbiota dysbiosis. After DEI, the abundance of the Akkermansia muciniphila was increased, while the abundance of the Sutterella genus was decreased in simple obese children. Our results may provide theoretical reference for future personalized obesity interventions based on gut microbiota. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01088-3.

3.
Curr Med Chem ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38310400

RESUMEN

HuR (Human antigen R) is an RNA binding protein (RBP) that specifically binds to certain RNA sequences, influencing post-transcriptional regulation. HuR is primarily involved in tumor regulation, as well as cell growth, proliferation, inflammation, and angiogenesis. HuR is implicated in endothelial activation, smooth muscle proliferation, inflammatory response, macrophage apoptosis, lipid regulation, and autophagy, playing a crucial regulatory role in atherosclerosis. Accumulating evidence suggests that HuR has dual roles in AS. On the one hand, HuR expedites the development of AS by facilitating endothelial activation, smooth muscle proliferation, and inflammation. On the contrary, it exerts beneficial effects by reducing macrophage apoptosis, regulating lipid efflux, and increasing autophagy. In this review, we aim to provide a comprehensive summary of the role of HuR in the development of AS by examining its involvement in cellular mechanisms, inflammation, autophagy, and apoptosis. Additionally, we discuss the mechanisms of drugs that target HuR, with the goal of offering new perspectives for the treatment of AS.

4.
Atherosclerosis ; 390: 117430, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301602

RESUMEN

BACKGROUND AND AIMS: Tripartite motif (TRIM65) is an important member of the TRIM protein family, which is a newly discovered E3 ligase that interacts with and ubiquitinates various substrates and is involved in diverse pathological processes. However, the function of TRIM65 in atherosclerosis remains unarticulated. In this study, we investigated the role of TRIM65 in the pathogenesis of atherosclerosis, specifically in vascular smooth muscle cells (VSMCs) phenotype transformation, which plays a crucial role in formation of atherosclerotic lesions. METHODS AND RESULTS: Both non-atherosclerotic and atherosclerotic lesions during autopsy were collected singly or pairwise from each individual (n = 16) to investigate the relationship between TRIM65 and the development of atherosclerosis. In vivo, Western diet-fed ApoE-/- mice overexpressing or lacking TRIM65 were used to assess the physiological function of TRIM65 on VSMCs phenotype, proliferation and atherosclerotic lesion formation. In vitro, VSMCs phenotypic transformation was induced by platelet-derived growth factor-BB (PDGF-BB). TRIM65-overexpressing or TRIM65-abrogated primary mouse aortic smooth muscle cells (MOASMCs) and human aortic smooth muscle cells (HASMCs) were used to investigate the mechanisms underlying the progression of VSMCs phenotypic transformation, proliferation and migration. Increased TRIM65 expression was detected in α-SMA-positive cells in the medial and atherosclerotic lesions of autopsy specimens. TRIM65 overexpression increased, whereas genetic knockdown of TRIM65 remarkably inhibited, atherosclerotic plaque development. Mechanistically, TRIM65 overexpression activated PI3K/Akt/mTOR signaling, resulting in the loss of the VSMCs contractile phenotype, including calponin, α-SMA, and SM22α, as well as cell proliferation and migration. However, opposite phenomena were observed when TRIM65 was deficient in vivo or in vitro. Moreover, in cultured PDGF-BB-induced TRIM65-overexpressing VSMCs, inhibition of PI3K by treatment with the inhibitor LY-294002 for 24 h markedly attenuated PI3K/Akt/mTOR activation, regained the VSMCs contractile phenotype, and blocked the progression of cell proliferation and migration. CONCLUSIONS: TRIM65 overexpression enhances atherosclerosis development by promoting phenotypic transformation of VSMCs from contractile to synthetic state through activation of the PI3K/Akt/mTOR signal pathway.


Asunto(s)
Aterosclerosis , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Becaplermina/genética , Becaplermina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Músculo Liso Vascular/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Movimiento Celular , Transducción de Señal , Proliferación Celular , Serina-Treonina Quinasas TOR/metabolismo , Aterosclerosis/patología , Miocitos del Músculo Liso/patología , Fenotipo , Células Cultivadas , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética
5.
Curr Med Chem ; 31(10): 1251-1264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36788688

RESUMEN

Coronary atherosclerotic disease (CAD) is a common cardiovascular disease and an important cause of death. Moreover, endothelial cells (ECs) injury is an early pathophysiological feature of CAD, and long noncoding RNAs (lncRNAs) can modulate gene expression. Recent studies have shown that lncRNAs are involved in the pathogenesis of CAD, especially by regulating ECs. In this review, we summarize the novel progress of lncRNA-modulated ECs in the pathogenesis of CAD, including ECs proliferation, migration, adhesion, angiogenesis, inflammation, apoptosis, autophagy, and pyroptosis. Thus, as lncRNAs regulate ECs in CAD, lncRNAs will provide ideal and novel targets for the diagnosis and drug therapy of CAD.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Células Endoteliales/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/patología , Aterosclerosis/metabolismo , Enfermedades Cardiovasculares/metabolismo
6.
Nitric Oxide ; 142: 47-57, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38049061

RESUMEN

BACKGROUND: Endothelial-mesenchymal transition (EndMT) induced by low shear stress plays an important role in the development of atherosclerosis. However, little is known about the correlation between hydrogen sulfide (H2S), a protective gaseous mediator in atherosclerosis and the process of EndMT. METHODS: We constructed a stable low-shear-stress-induced(2 dyn/cm2) EndMT model, acombined with the pretreatment method of hydrogen sulfide slow release agent(GYY4137). The level of MEST was detected in the common carotid artery of ApoE-/- mice with local carotid artery ligation. The effect of MEST on atherosclerosis development in vivo was verified using ApoE-/- mice were given tail-vein injection of endothelial-specific overexpressed and knock-down MEST adeno-associated virus (AAV). RESULTS: These findings confirmed that MEST is up-regulated in low-shear-stress-induced EndMT and atherosclerosis. In vivo experiments showed that MEST gene overexpression significantly promoted EndMT and aggravated the development of atherosclerotic plaques and MEST gene knockdown significantly inhibited EndMT and delayed the process of atherosclerosis. In vitro, H2S inhibits the expression of MEST and EndMT induced by low shear stress and inhibits EndMT induced by MEST overexpression. Knockdown of NFIL3 inhibit the up regulation of MEST and EndMT induced by low shear stress in HUVECs. CHIP-qPCR assay and Luciferase Reporter assay confirmed that NFIL3 binds to MEST DNA, increases its transcription and H2S inhibits the binding of NFIL3 and MEST DNA, weakening NFIL3's transcriptional promotion of MEST. Mechanistically, H2S increased the sulfhydrylation level of NFIL3, an important upstream transcription factors of MEST. In part, transcription factor NFIL3 restrain its binding to MEST DNA by sulfhydration. CONCLUSIONS: H2S negatively regulate the expression of MEST by sulfhydrylation of NFIL3, thereby inhibiting low-shear-stress-induced EndMT and atherosclerosis.


Asunto(s)
Aterosclerosis , Sulfuro de Hidrógeno , Ratones , Animales , Humanos , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Transición Endotelial-Mesenquimatosa , Aterosclerosis/genética , Aterosclerosis/metabolismo , Endotelio/metabolismo , ADN/metabolismo , Apolipoproteínas E/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Transición Epitelial-Mesenquimal
7.
Cell Death Discov ; 9(1): 456, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38097554

RESUMEN

MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) is a human paracaspase protein with proteolytic activity via its caspase-like domain. The pharmacological inhibition of MALT1 by MI-2, a specific chemical inhibitor, diminishes the response of endothelial cells to inflammatory stimuli. However, it is largely unknown how MALT1 regulates the functions of vascular smooth muscle cells (SMCs). This study aims to investigate the impact of MALT1 inhibition by MI-2 on the functions of vascular SMCs, both in vitro and in vivo. MI-2 treatment led to concentration- and time-dependent cell death of cultured aortic SMCs, which was rescued by the iron chelator deferoxamine (DFO) or ferrostatin-1 (Fer-1), a specific inhibitor of ferroptosis, but not by inhibitors of apoptosis (Z-VAD-fmk), pyroptosis (Z-YVAD-fmk), or necrosis (Necrostatin-1, Nec-1). MI-2 treatment downregulated the expression of glutathione peroxidase 4 (GPX4) and ferritin heavy polypeptide 1 (FTH1), which was prevented by pre-treatment with DFO or Fer-1. MI-2 treatment also activated autophagy, which was inhibited by Atg7 deficiency or bafilomycin A1 preventing MI-2-induced ferroptosis. MI-2 treatment reduced the cleavage of cylindromatosis (CYLD), a specific substrate of MALT1. Notably, MI-2 treatment led to a rapid loss of contractility in mouse aortas, which was prevented by co-incubation with Fer-1. Moreover, local application of MI-2 significantly reduced carotid neointima lesions and atherosclerosis in C57BL/6J mice and apolipoprotein-E knockout (ApoE-/-) mice, respectively, which were both ameliorated by co-treatment with Fer-1. In conclusion, the present study demonstrated that MALT1 inhibition induces ferroptosis of vascular SMCs, likely contributing to its amelioration of proliferative vascular diseases.

8.
Curr Med Chem ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608612

RESUMEN

BACKGROUND AND OBJECTIVE: Endothelial cell activation, characterized by increased levels of vascular cell adhesion molecule 1 (VCAM-1), plays a crucial role in the development of atherosclerosis (AS). Therefore, inhibition of VCAM-1-mediated inflammatory response is of great significance in the prevention and treatment of AS. The tripartite motif (TRIM) protein-TRIM65 is involved in the regulation of cancer development, antivirals and inflammation. We aimed to study the functions of TRIM65 in regulating endothelial inflammation by interacting with VCAM-1 in atherogenesis. METHODS AND RESULTS: In vitro, we report that human umbilical vein endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (oxLDL) significantly upregulate the expression of TRIM65 in a time- and dose-dependent manner. Overexpression of TRIM65 reduces oxLDL-triggered VCAM-1 protein expression, decreases monocyte adhesion to HUVECs and inhibits the production of the inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α as well as endothelial oxLDL transcytosis. In contrast, siRNA-mediated knockdown of TRIM65 promotes the expression of VCAM-1, resulting in increased adhesion of monocytes and the release of the inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α and enhances endothelial oxLDL transcytosis. In vivo, we measured the high expression of TRIM65 in ApoE-/- mouse aortic plaques compared to C57BL/6J mouse aortic plaques. Then, we examined whether the blood levels of VCAM-1 were higher in TRIM65 knockout ApoE-/- mice than in control mice induced by a Western diet. Furthermore, Western blot results showed that the protein expression of VCAM-1 was markedly enhanced in TRIM65 knockout ApoE-/- mouse aortic tissues compared to that of the controls. Immunofluorescence staining revealed that the expression of VCAM-1 was significantly increased in atherosclerotic plaques of TRIM65-/-/ApoE-/- aortic vessels compared to ApoE-/- controls. Mechanistically, TRIM65 specifically interacts with VCAM-1 and targets it for K48-linked ubiquitination. CONCLUSION: Our studies indicate that TRIM65 attenuates the endothelial inflammatory response by targeting VCAM-1 for ubiquitination and provides a potential therapeutic target for the inhibition of endothelial inflammation in AS.

9.
Thorac Cancer ; 14(26): 2648-2656, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37491972

RESUMEN

BACKGROUND: The type and placement of chest tube for patients undergoing uniportal video-assisted thoracoscopic lobectomy remains controversial. The aim of this study was to assess the efficacy and safety of a novel technique in which a pigtail catheter was used alone as the chest tube and placed near the incision for chest drainage after uniportal video-assisted thoracoscopic lobectomy and extended lymphadenectomy. METHODS: A total of 217 patients undergoing uniportal video-assisted thoracoscopic lobectomy were retrospectively reviewed and divided into two groups. In group A, a 12-Fr pigtail catheter with several side ports was placed next to the uniportal wound. In group B, a conventional 20-Fr chest tube was placed through the uniportal wound itself. Postoperative complications related to chest tube placement and patients' subjective satisfaction were compared between the two groups. Postoperative pain management effect and other clinical outcomes such as duration of chest drainage and postoperative stay were also compared. RESULTS: There were 112 patients in group A and 105 patients in group B. A significantly lower incidence of wound complications was found in group A postoperatively (p = 0.034). The pain score on coughing in group A was significantly lower than that in group B on postoperative day two (POD2) (p = 0.021). There was no significant difference of other clinical outcomes such as duration of chest drainage and postoperative stay as well as major complications between the two groups. CONCLUSION: Placing a 12-Fr pigtail catheter alone next to the uniportal wound for chest drainage might be effective and safe after uniportal video-assisted thoracoscopic lobectomy and extended lymphadenectomy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Cirugía Torácica Asistida por Video , Humanos , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Tubos Torácicos , Estudios de Factibilidad , Neoplasias Pulmonares/cirugía , Neumonectomía , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Anciano
10.
Cells ; 12(11)2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37296583

RESUMEN

(+)-JQ1, a specific chemical inhibitor of bromodomain and extraterminal (BET) family protein 4 (BRD4), has been reported to inhibit smooth muscle cell (SMC) proliferation and mouse neointima formation via BRD4 regulation and modulate endothelial nitric oxide synthase (eNOS) activity. This study aimed to investigate the effects of (+)-JQ1 on smooth muscle contractility and the underlying mechanisms. Using wire myography, we discovered that (+)-JQ1 inhibited contractile responses in mouse aortas with or without functional endothelium, reducing myosin light chain 20 (LC20) phosphorylation and relying on extracellular Ca2+. In mouse aortas lacking functional endothelium, BRD4 knockout did not alter the inhibition of contractile responses by (+)-JQ1. In primary cultured SMCs, (+)-JQ1 inhibited Ca2+ influx. In aortas with intact endothelium, (+)-JQ1 inhibition of contractile responses was reversed by NOS inhibition (L-NAME) or guanylyl cyclase inhibition (ODQ) and by blocking the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. In cultured human umbilical vein endothelial cells (HUVECs), (+)-JQ1 rapidly activated AKT and eNOS, which was reversed by PI3K or ATK inhibition. Intraperitoneal injection of (+)-JQ1 reduced mouse systolic blood pressure, an effect blocked by co-treatment with L-NAME. Interestingly, (+)-JQ1 inhibition of aortic contractility and its activation of eNOS and AKT were mimicked by the (-)-JQ1 enantiomer, which is structurally incapable of inhibiting BET bromodomains. In summary, our data suggest that (+)-JQ1 directly inhibits smooth muscle contractility and indirectly activates the PI3K/AKT/eNOS cascade in endothelial cells; however, these effects appear unrelated to BET inhibition. We conclude that (+)-JQ1 exhibits an off-target effect on vascular contractility.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratones , Humanos , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Proteínas Nucleares , Factores de Transcripción/metabolismo , Aorta/metabolismo , Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas de Ciclo Celular
11.
J Cell Commun Signal ; 17(3): 495-506, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36856929

RESUMEN

CREB-regulated transcription coactivator2 (CRTC2 or TORC2) is a transcriptional coactivator of CREB(cAMP response element binding protein), which affects human energy metabolism through cyclic adenosine phosphate pathway, Mammalian target of rapamycin (mTOR) pathway, Sterol regulatory element binding protein 1(SREBP1), Sterol regulatory element binding protein 2 (SREBP2) and other substances Current studies on CRTC2 mainly focus on glucose and lipid metabolism, relevant studies show that CRTC2 can participate in the occurrence and development of related diseases by affecting metabolic homeostasis. It has been found that Crtc2 acts as a signaling regulator for cAMP and Ca2 + signaling pathways in many cell types, and phosphorylation at ser171 and ser275 can regulate downstream biological functions by controlling CRTC2 shuttling between cytoplasm and nucleus.

12.
J Clin Hypertens (Greenwich) ; 25(3): 238-250, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36799888

RESUMEN

Statins have been proven to be effective in minimizing the risk of cardiovascular adverse events, however, their effect on BP variability is debatable with respect to their significance and their use as a potential anti-hypertensive. Using a meta-analysis approach, the aim of this study was to explore whether certain statins have the potential to lower blood pressure (BP). For the period 2002-2022, Scopus, PubMed, Web of Science, and the Cochrane Central Register of Controlled Trials databases were searched for the studies that examined the effect of statins on blood pressure in normotensive or hypertensive individuals. Randomized controlled clinical trials that investigated this effect were included based on our inclusion criteria. Our primary outcomes were changes in systolic and diastolic blood pressure (DBP). The final analysis of the study included 49 RCTs involving 45 173 participants randomized to receive either statins or placebo. Among the two groups, the total weighted mean difference (WMD) for systolic blood pressure (ΔSBP) was -1.42 (95% CI: -2.38, -0.46; p = .004) and diastolic blood pressure (ΔDBP) was 0.82 (95% CI: -1.28, -0.36; p = .0005). Despite various studies suggesting the efficacy of statins in blood pressure lowering to be significant and non-significant both, we observed a decrease in SBP and DBP both, although the change was not as large and could be considered significant. A large multicenter, multi-ethnic, large sample pool size, and a long period follow-up study is still required to assert these claims.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Hipertensión , Humanos , Presión Sanguínea , Hipertensión/tratamiento farmacológico , Hipertensión/inducido químicamente , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Ensayos Clínicos Controlados Aleatorios como Asunto , Antihipertensivos/efectos adversos , Estudios Multicéntricos como Asunto
13.
Curr Med Chem ; 30(31): 3550-3561, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36372915

RESUMEN

Lipid metabolism is a complex biochemical process that regulates normal cell activity and death. Ferroptosis is a novel mode of programmed cell death different from apoptosis, pyroptosis, and autophagy. Abnormal lipid metabolism may lead to lipid peroxidation and cell rupture death, which are regulated by lipoxygenase (LOX), long-chain acyl-coA synthases, and antioxidant enzymes. Alternatively, Fe2+ and Fe3+ are required for the activity of LOXs and ferroptosis, and Fe2+ can significantly accelerate lipid peroxidation in ferroptosis. Abnormal lipid metabolism is a certain risk factor for cardiovascular disease. In recent years, the important role of ferroptosis in developing cardiovascular disease has been increasingly reported. Reducing lipid accumulation could reduce the occurrence of ferroptosis, thus alleviating cardiovascular disease deterioration. This article reviews the relationship of lipid peroxidation to the general mechanism of ferroptosis and highlights lipid peroxidation as the common point of ferroptosis and cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Ferroptosis , Humanos , Peroxidación de Lípido , Enfermedades Cardiovasculares/tratamiento farmacológico , Apoptosis , Muerte Celular
14.
Curr Med Chem ; 30(40): 4554-4568, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36476437

RESUMEN

An abdominal aortic aneurysm (AAA) is a progressive dilatation of the vascular wall occurring below the aortic fissure, preferably occurring below the renal artery. The molecular mechanism of AAA has not yet been elucidated. In the past few decades, research on abdominal aortic aneurysm has been mainly focused on the vessel wall, and it is generally accepted that inflammation and middle layer fracture of the vessel wall is the core steps in the development of AAA. However, perivascular adipose tissue plays a non-negligible role in the occurrence and development of AAA. The position of PVAT plays a supporting and protective role on the vascular wall, but the particularity of the location makes it not only have the physiological function of visceral fat; but also can regulate the vascular function by secreting a large number of adipokines and cytokines. An abdominal aortic aneurysm is getting higher and higher, with a vascular rupture, low rescue success rate, and extremely high lethality rate. At present, there is no drug to control the progression or reverse abdominal aortic aneurysm. Therefore, it is critical to deeply explore the mechanism of abdominal aortic aneurysms and find new therapeutic ways to inhibit abdominal aortic aneurysm formation and disease progression. An abdominal aortic aneurysm is mainly characterized by inflammation of the vessel wall and matrix metalloprotein degradation. In this review, we mainly focus on the cytokines released by the perivascular adipose tissue, summarize the mechanisms involved in the regulation of abdominal aortic aneurysms, and provide new research directions for studying abdominal aortic aneurysms.


Asunto(s)
Aneurisma de la Aorta Abdominal , Motivación , Humanos , Aneurisma de la Aorta Abdominal/metabolismo , Tejido Adiposo/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo
15.
Curr Med Chem ; 30(16): 1848-1859, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35786179

RESUMEN

Ferroptosis is an iron-dependent cell death, characterized by the accumulation of lipid-reactive oxygen species; various regulatory mechanisms influence the course of ferroptosis. The rapid increase in cardiovascular diseases (CVDs) is an extremely urgent problem. CVDs are characterized by the progressive deterioration of the heart and blood vessels, eventually leading to circulatory system disorder. Accumulating evidence, however, has highlighted crucial roles of ferroptosis in CVDs. Hydrogen sulfide plays a significant part in anti-oxidative stress, which may participate in the general mechanism of ferroptosis and regulate it by some signaling molecules. This review has primarily summarized the effects of hydrogen sulfide on ferroptosis and cardiovascular disease, especially the antioxidative stress, and would provide a more effective direction for the clinical study of CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Ferroptosis , Sulfuro de Hidrógeno , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Muerte Celular , Corazón , Especies Reactivas de Oxígeno , Peroxidación de Lípido
16.
Am J Transl Res ; 14(8): 5870-5882, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105015

RESUMEN

OBJECTIVE: A SVM predictive model consisting of preoperative tumor markers and inflammatory factors was established to explore its significance in evaluating the prognosis of patients with ESCC. METHODS: Clinical data of 311 patients with ESCC who underwent surgery were collected and followed up until October 2019. Statistical software SPSS version 22.0, and R (version 3.6.1) were used to analyze the data. RESULTS: In the Test, Val1 and Val2 groups, the sensitivity of preoperative optimal combination (SVM5) to predict the prognosis of patients with ESCC was 88.89%, 76.92%, and 73.68%, respectively. The specificity was 92.00%, 74.42%, and 78.00%, respectively. The sensitivity and specificity were not statistically different from those of SVM9 (P > 0.05), while the sensitivity of SVM9+5 for predicting the prognosis of patients with ESCC was 91.84%, 82.26%, and 80.36%, respectively. The specificity was 97.44%, 75.93%, and 78.00%, respectively. Its sensitivity and specificity were higher than those of SVM9 (P < 0.001). CONCLUSIONS: We used a nomogram to input the indicators in the SVM5 into the artificial intelligence program for patients with ESCC who have not yet developed an individualized plan. It can predict and evaluate the postoperative outcome of patients with ESCC with a sensitivity of 79.04%, specificity of 81.82%, PPV of 83.54%, NPV of 76.97%, and accuracy of 80.32%. For patients who have undergone surgery, we can enter the indicators in SVM9+5 into the artificial intelligence program.

17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1867(12): 159221, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35981705

RESUMEN

Polo-like kinase 1 (PLK1) is a serine/threonine kinase involving lipid metabolism and cardiovascular disease. However, its role in atherogenesis has yet to be determined. The aim of this study was to observe the impact of PLK1 on macrophage lipid accumulation and atherosclerosis development and to explore the underlying mechanisms. We found a significant reduction of PLK1 expression in lipid-loaded macrophages and atherosclerosis model mice. Lentivirus-mediated overexpression of PLK1 promoted cholesterol efflux and inhibited lipid accumulation in THP-1 macrophage-derived foam cells. Mechanistic analysis revealed that PLK1 stimulated the phosphorylation of AMP-activated protein kinase (AMPK), leading to activation of the peroxisome proliferator-activated receptor γ (PPARγ)/liver X receptor α (LXRα) pathway and up-regulation of ATP binding cassette transporter A1 (ABCA1) and ABCG1 expression. Injection of lentiviral vector expressing PLK1 increased reverse cholesterol transport, improved plasma lipid profiles and decreased atherosclerotic lesion area in apoE-deficient mice fed a Western diet. PLK1 overexpression also facilitated AMPK and HSL phosphorylation and enhanced the expression of PPARγ, LXRα, ABCA1, ABCG1 and LPL in the aorta. In summary, these data suggest that PLK1 inhibits macrophage lipid accumulation and mitigates atherosclerosis by promoting ABCA1- and ABCG1-dependent cholesterol efflux via the AMPK/PPARγ/LXRα pathway.


Asunto(s)
Aterosclerosis , Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Animales , Apolipoproteínas E/metabolismo , Aterosclerosis/metabolismo , Proteínas de Ciclo Celular/genética , Colesterol/metabolismo , Receptores X del Hígado/genética , Receptores X del Hígado/metabolismo , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Serina , Quinasa Tipo Polo 1
18.
Curr Pharm Des ; 28(16): 1321-1328, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35974674

RESUMEN

Hippo, an evolutionarily conserved kinase cascade reaction in organisms, can respond to a set of signals, such as mechanical signals and cell metabolism, to maintain cell growth, differentiation, tissue/organ development, and homeostasis. In the past ten years, Hippo has controlled the development of tissues and organs by regulating the process of cell proliferation, especially in the field of cardiac regeneration after myocardial infarction. This suggests that Hippo signaling is closely linked to cardiovascular disease. Atherosclerosis is the most common disease of the cardiovascular system. It is characterised by chronic inflammation of the vascular wall, mainly involving dysfunction of endothelial cells, smooth muscle cells, and macrophages. Oxidized Low density lipoprotein (LDL) damages the barrier function of endothelial cells, which enter the middle membrane of the vascular wall, accelerate the formation of foam cells, and promote the occurrence and development of atherosclerosis. Autophagy is associated with the development of atherosclerosis. However, the mechanism of Hippo regulation of atherosclerosis has not meant to be clarified. In view of the pivotal role of this signaling pathway in maintaining cell growth, proliferation, and differentiation, the imbalance of Hippo is related to atherosclerosis and related diseases. In this review, we emphasized Hippo as a hub for regulating atherosclerosis and discussed its potential targets in pathophysiology, human diseases, and related pharmacology.


Asunto(s)
Aterosclerosis , Células Endoteliales , Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Células Espumosas/metabolismo , Humanos , Macrófagos/metabolismo , Transducción de Señal
19.
Front Cardiovasc Med ; 9: 909178, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035922

RESUMEN

Hydrogen sulfide (H2S), a gas transmitter found in eukaryotic organisms, plays an essential role in several physiological processes. H2S is one of the three primary biological gas transmission signaling mediators, along with nitric oxide and carbon monoxide. Several animal and in vitro experiments have indicated that H2S can prevent coronary endothelial mesenchymal transition, reduce the expression of endothelial cell adhesion molecules, and stabilize intravascular plaques, suggesting its potential role in the treatment of atherosclerosis (AS). H2S donors are compounds that can release H2S under certain circumstances. Development of highly targeted H2S donors is a key imperative as these can allow for in-depth evaluation of the anti-atherosclerotic effects of exogenous H2S. More importantly, identification of an optimal H2S donor is critical for the creation of H2S anti-atherosclerotic prodrugs. In this review, we discuss a wide range of H2S donors with anti-AS potential along with their respective transport pathways and design-related limitations. We also discuss the utilization of nano-synthetic technologies to manufacture H2S donors. This innovative and effective design example sheds new light on the production of highly targeted H2S donors.

20.
Nitric Oxide ; 127: 18-25, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35839994

RESUMEN

Hydrogen sulfide (H2S) is the third gaseous signaling molecule discovered in the body after NO and CO and plays an important organismal protective role in various diseases. Within adipose tissue, related catalytic enzymes (cystathionine-ß-synthetase, cystathionine-γ-lyase, and 3-mercaptopyruvate transsulfuration enzyme) can produce and release endogenous H2S. Atherosclerosis (As) is a pathological change in arterial vessels that is closely related to abnormal glucose and lipid metabolism and a chronic inflammatory response. Previous studies have shown that H2S can act on the cardiovascular system, exerting effects such as improving disorders of glycolipid metabolism, alleviating insulin resistance, protecting the function of vascular endothelial cells, inhibiting vascular smooth muscle cell proliferation and migration, regulating vascular tone, inhibiting the inflammatory response, and antagonizing the occurrence and development of As.


Asunto(s)
Aterosclerosis , Sulfuro de Hidrógeno , Tejido Adiposo/metabolismo , Aterosclerosis/patología , Cistationina gamma-Liasa/metabolismo , Células Endoteliales/metabolismo , Humanos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA