Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Nitric Oxide ; 152: 78-89, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39305980

RESUMEN

BACKGROUND: Under normal circumstances, high-density lipoprotein (HDL) is considered to have cardiovascular protective effects, but the impact of oxidized HDL (ox-HDL) on vascular endothelial function remains poorly understood. Mitochondrial function is closely related to endothelial function, and hydrogen sulfide (H2S) is a gas with endothelial protective properties. The novel hydrogen sulfide donor AP39 can target mitochondria to release H2S, but the combined effects of ox-HDL and AP39 on vascular endothelium are not well studied. METHODS: We established a cell model of ox-HDL-induced endothelial cell damage and mitochondrial dysfunction using human umbilical vein endothelial cells (HUVECs) and conducted AP39 pretreatment. The experiments confirmed the functional damage and mitochondrial dysfunction in HUVECs caused by ox-HDL. Additionally, to further explore the role of SIRT1 in AS, we analyzed SIRT1 expression in AS carotid artery tissue. This included the analysis of differentially expressed genes from AS-related datasets, presented through volcano plots and heatmaps, with enrichment analysis of downregulated genes in KEGG pathways and GO functions. Furthermore, we evaluated the differences in SIRT1 expression in coronary arteries with varying degrees of stenosis and in early and late-stage AS carotid artery tissues, and analyzed data from SIRT1 knockout mouse models. RESULTS: The experimental results indicate that AP39 effectively alleviated ox-HDL-induced endothelial cell damage and mitochondrial dysfunction by upregulating SIRT1 expression. MTT and CCK-8 assays showed that ox-HDL treatment led to decreased cell viability and proliferation in HUVECs, reduced eNOS expression, and significantly increased levels of ICAM-1, IL-6, and TNF-α, along with enhanced monocyte adhesion. These findings reveal the damaging effects of ox-HDL on HUVECs. Transcriptomic data indicated that while SIRT1 expression did not significantly differ in coronary arteries with varying degrees of stenosis, it was notably downregulated in AS carotid artery tissues, especially in late-stage AS tissues. KEGG pathway enrichment analysis revealed that SIRT1 downregulated genes were associated with processes such as vascular smooth muscle contraction, while GO analysis showed that these downregulated genes were involved in muscle system processes and muscle contraction functions, further confirming SIRT1's critical role in AS pathology. In transcriptomic data from the SIRT1 knockout mouse model, elevated levels of inflammation-related proteins IL-6 and TNF-α were observed after SIRT1 knockout, along with decreased expression of the chaperone protein PGC-1α. The expression of mitochondrial-related functional proteins Nrf2 and PGC-1α was positively correlated with SIRT1 expression, while inflammation-related proteins ICAM-1, IL-6, IL-20, and TNF-α were negatively correlated with SIRT1 expression. We further discovered that ox-HDL triggered mitochondrial dysfunction, as evidenced by reduced expression of Mfn2, Nrf2, PGC1-α, UCP-1, and SIRT1, corroborating the results from the previous database analysis. Additionally, mitochondrial dysfunction was characterized by decreased mitochondrial membrane potential (MMP), increased mitochondrial ROS levels, and reduced ATP content, further impacting cellular energy metabolism and respiratory function. Subsequent experimental results showed that the addition of AP39 mitigated these adverse effects, as evidenced by decreased levels of ICAM-1, IL-6, and TNF-α, increased eNOS expression, reduced monocyte adhesion, increased mitochondrial H2S content, and upregulated expression of SIRT1 protein associated with mitochondrial function, reduced ROS levels, and increased ATP content. Furthermore, validation experiments using the SIRT1 inhibitor EX527 confirmed that AP39 alleviated ox-HDL-induced endothelial cell damage and mitochondrial dysfunction by upregulating SIRT1 expression. CONCLUSION: Ox-HDL can induce damage and mitochondrial dysfunction in HUVECs, while AP39 inhibits ox-HDL-induced endothelial cell damage and mitochondrial dysfunction by upregulating SIRT1.

2.
Eur J Pharmacol ; 982: 176900, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39168432

RESUMEN

Atrial fibrosis is associated with the occurrence of atrial fibrillation (AF) and regulated by the transforming growth factor-ß1 (TGF-ß1)/Smad2/3 signalling pathway. Unfortunately, the mechanisms of regulation of TGF-ß1/Smad2/3-induced atrial fibrosis and vulnerability to AF remain still unknown. Previous studies have shown that sirtuin3 (SIRT3) sulfhydration has strong anti-fibrotic effects. We hypothesised that SIRT3 sulfhydration inhibits angiotensin II (Ang-II)-induced atrial fibrosis via blocking the TGF-ß1/Smad2/3 signalling pathway. In this study, we found that SIRT3 expression was decreased in the left atrium of patients with AF compared to that in those with sinus rhythm (SR). In vitro, SIRT3 knockdown by small interfering RNA significantly expanded Ang-II-induced atrial fibrosis and TGF-ß1/Smad2/3 signalling pathway activation, whereas supplementation with Sodium Hydrosulfide (NaHS, exogenous hydrogen sulfide donor and sulfhydration agonist) and SIRT3 overexpression using adenovirus ameliorated Ang-II-induced atrial fibrosis. Moreover, we observed suppression of the TGF-ß1/Smad2/3 pathway when Ang-II was combined with NaHS treatment, and the effect of this co-treatment was consistent with that of Ang-II combined with LY3200882 (Smad pathway inhibitor) on reducing atrial fibroblast proliferation and cell migration in vitro. Supplementation with dithiothreitol (DTT, a sulfhydration inhibitor) and adenovirus SIRT3 shRNA blocked the ameliorating effect of NaHS and AngII co-treatment on atrial fibrosis in vitro. Finally, continued treatment with NaHS in rats ameliorated atrial fibrosis and remodelling, and further improved AF vulnerability induced by Ang-II, which was reversed by DTT and adenovirus SIRT3 shRNA, suggesting that SIRT3 sulfhydration might be a potential therapeutic target in atrial fibrosis and AF.


Asunto(s)
Angiotensina II , Fibrilación Atrial , Fibrosis , Atrios Cardíacos , Sulfuro de Hidrógeno , Transducción de Señal , Sirtuina 3 , Proteína Smad2 , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Anciano , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas , Angiotensina II/farmacología , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Fibrilación Atrial/prevención & control , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Sirtuina 3/metabolismo , Sirtuina 3/genética , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
3.
Cancer Med ; 13(14): e70023, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39001679

RESUMEN

BACKGROUND: Meta-analyses have primarily focused on the effects of exercise-based prehabilitation on postoperative outcomes and ignored the role of nutritional intervention. In this study, we filled this gap by investigating the effect of nutrition-based prehabilitation on the postoperative outcomes of patients who underwent esophagectomy and gastrectomy. METHODS: Five electronic databases, namely, PubMed, the Web of Science, Embase, Cochrane Library, and CINAHL, were searched. Adults diagnosed with esophagogastric cancer who were scheduled to undergo surgery and had undergone uni- or multimodal prehabilitation, with at least a week of mandatory nutritional intervention, were included. Forest plots were used to extract and visualize the data from the included studies. The occurrence of any postoperative complication was considered the primary endpoint. RESULTS: Eight studies met the eligibility criteria, with five randomized controlled trials (RCTs) and three cohort studies. In total, 661 patients were included. Any prehabilitation, that is, unimodal (only nutrition) and multimodal prehabilitation, collectively decreased the risk of any postoperative complication by 23% (95% confidence interval [CI] = 0.66-0.90). A similar effect was exclusively observed for multimodal prehabilitation (risk ratio [RR] = 0.78, 95% CI = 0.66-0.93); however, it was not significant for unimodal prehabilitation. Any prehabilitation significantly decreased the length of hospital stay (LOS) (weighted mean difference = -0.77, 95% CI = -1.46 to -0.09). CONCLUSIONS: Nutrition-based prehabilitation, particularly multimodal prehabilitation, confers protective effects against postoperative complications after esophagectomy and gastrectomy. Our findings suggest that prehabilitation slightly decreases LOS; however, the finding is not clinically significant. Therefore, additional rigorous RCTs are warranted for further substantiation.


Asunto(s)
Neoplasias Esofágicas , Esofagectomía , Gastrectomía , Complicaciones Posoperatorias , Ejercicio Preoperatorio , Neoplasias Gástricas , Humanos , Neoplasias Esofágicas/cirugía , Neoplasias Gástricas/cirugía , Complicaciones Posoperatorias/prevención & control , Complicaciones Posoperatorias/epidemiología , Esofagectomía/efectos adversos , Esofagectomía/rehabilitación , Gastrectomía/efectos adversos , Resultado del Tratamiento , Tiempo de Internación , Cuidados Preoperatorios/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Estado Nutricional
4.
Am J Hypertens ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023012

RESUMEN

BACKGROUND: Hypertension may result in atrial fibrillation (AF) and lipid metabolism disorders. The Sirtuins3 (SIRT3) / AMP-activated protein kinase (AMPK) signaling pathway has the capacity to regulate lipid metabolism disorders and the onset of AF. We hypothesize that the SIRT3/AMPK signaling pathway suppresses lipid metabolism disorders, thereby mitigating salt-sensitive hypertension (SSHT)-induced susceptibility to AF. METHODS: The study involved 7-week-old male Dahl salt-sensitive that were fed either high-salt diet (8% NaCl; DSH group) or normal diet (0.3% NaCl; DSN group). Then DSH group were administered either oral metformin (MET, an AMPK agonist) or intraperitoneal injection of Honokiol (HK, a SIRT3 agonist). This experimental model allowed for the measurement of SBP, the expression levels of lipid metabolism-related biomarker, pathological examination of atrial fibrosis and lipid accumulation, as well as AF inducibility and AF duration. RESULTS: DSH decrease SIRT3, phosphorylation-AMPK and VLCAD expression, increased FASN and FABP4 expression and concentrations of FFA and TG, atrial fibrosis and lipid accumulation in atrial tissue, enhanced level of SBP, promoted AF induction rate and prolonged AF duration, which are blocked by MET and HK. Our results also showed that the degree of atrial fibrosis was negatively correlated with VLCAD expression, but positively correlated with the expression of FASN and FABP4. CONCLUSIONS: We have confirmed that high-salt diet can result in hypertension, associated atrial tissue lipid metabolism dysfunction. This condition is linked to the inhibition of the SIRT3/AMPK signaling pathway, which plays a significant role in the progression of susceptibility to AF in SSHT rats.

5.
Am J Hypertens ; 37(9): 726-733, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38761040

RESUMEN

BACKGROUND: Hypertension is a risk factor for atrial fibrillation (AF), and brain and muscle arnt-like protein 1 (Bmal1) regulate circadian blood pressure and is implicated in several fibrotic disorders. Our hypothesis that Bmal1 inhibits atrial fibrosis and susceptibility to AF in salt-sensitive hypertension (SSHT) and our study provides a new target for the pathogenesis of AF induced by hypertension. METHODS: The study involved 7-week-old male Dahl salt-sensitive that were fed either a high-salt diet (8% NaCl; DSH group) or a normal diet (0.3% NaCl; DSN group). An experimental model was used to measure systolic blood pressure (SBP), left atrial ejection fraction (LAEF), left atrial end-volume index (LAEVI), left atrial index (LAFI), AF inducibility, AF duration, and atrial fibrosis pathological examination and the expression of Baml1 and fibrosis-related proteins (TNF-α and α-SMA) in left atrial tissue. RESULTS: DSH increased TNF-α and α-SMA expression in atrial tissue, level of SBP and LAESVI, atrial fibrosis, AF induction rate, and AF duration, and decreased Bmal1 expression in atrial tissue, the circadian rhythm of hypertension, and level of LAEF and LAFI. Our results also showed that the degree of atrial fibrosis was negatively correlated with Bmal1 expression, but positively correlated with the expression of TNF-α and α-SMA. CONCLUSIONS: We demonstrated that a high-salt diet leads to circadian changes in hypertension due to a reduction of Bmal1 expression, which plays a crucial role in atrial fibrosis and increased susceptibility to AF in SSHT rats.


Asunto(s)
Factores de Transcripción ARNTL , Fibrilación Atrial , Presión Sanguínea , Modelos Animales de Enfermedad , Fibrosis , Atrios Cardíacos , Hipertensión , Ratas Endogámicas Dahl , Cloruro de Sodio Dietético , Animales , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Fibrilación Atrial/metabolismo , Fibrilación Atrial/etiología , Fibrilación Atrial/prevención & control , Fibrilación Atrial/fisiopatología , Masculino , Cloruro de Sodio Dietético/efectos adversos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Ratas , Factor de Necrosis Tumoral alfa/metabolismo , Remodelación Atrial/efectos de los fármacos
6.
Mol Cell Biochem ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652215

RESUMEN

Angiopoietin-1 (Ang-1) and Vascular Endothelial Growth Factor (VEGF) are central regulators of angiogenesis and are often inactivated in various cardiovascular diseases. VEGF forms complexes with ETS transcription factor family and exerts its action by downregulating multiple genes. Among the target genes of the VEGF-ETS complex, there are a significant number encoding key angiogenic regulators. Phosphorylation of the VEGF-ETS complex releases transcriptional repression on these angiogenic regulators, thereby promoting their expression. Ang-1 interacts with TEK, and this phosphorylation release can be modulated by the Ang-1-TEK signaling pathway. The Ang-1-TEK pathway participates in the transcriptional activation of VEGF genes. In summary, these elements constitute the Ang-1-TEK-VEGF signaling pathway. Additionally, Ang-1 is activated under hypoxic and inflammatory conditions, leading to an upregulation in the expression of TEK. Elevated TEK levels result in the formation of the VEGF-ETS complex, which, in turn, downregulates the expression of numerous angiogenic genes. Hence, the Ang-1-dependent transcriptional repression is indirect. Reduced expression of many target genes can lead to aberrant angiogenesis. A significant overlap exists between the target genes regulated by Ang-1-TEK-VEGF and those under the control of the Ang-1-TEK-TSP-1 signaling pathway. Mechanistically, this can be explained by the replacement of the VEGF-ETS complex with the TSP-1 transcriptional repression complex at the ETS sites on target gene promoters. Furthermore, VEGF possesses non-classical functions unrelated to ETS and DNA binding. Its supportive role in TSP-1 formation may be exerted through the VEGF-CRL5-VHL-HIF-1α-VH032-TGF-ß-TSP-1 axis. This review assesses the regulatory mechanisms of the Ang-1-TEK-VEGF signaling pathway and explores its significant overlap with the Ang-1-TEK-TSP-1 signaling pathway.

7.
Indian J Microbiol ; 64(1): 82-91, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38468732

RESUMEN

Children obesity is a serious public health problem drawing much attention around the world. Recent research indicated that gut microbiota plays a vital role in children obesity, and disturbed gut microbiota is a prominent characteristic of obese children. Diet and exercise are efficient intervention for weight loss in obesity children, however, how the gut microbiota is modulated which remains largely unknown. To characterize the feature of gut microbiota in obese children and explore the effect of dietary and exercise on gut microbiota in simple obese children, 107 healthy children and 86 obese children were recruited, and among of the obese children 39 received the dietary-exercise combined weight loss intervention (DEI). The gut microbiota composition was detected by the 16S amplicon sequencing method. The gut microbiota composition was significantly different between obese children and the healthy cohort, and DEI significantly reduced the body weight and ameliorated the gut microbiota dysbiosis. After DEI, the abundance of the Akkermansia muciniphila was increased, while the abundance of the Sutterella genus was decreased in simple obese children. Our results may provide theoretical reference for future personalized obesity interventions based on gut microbiota. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01088-3.

8.
Noncoding RNA Res ; 9(2): 330-340, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38505306

RESUMEN

In previous study we characterized the oncogenic role of long non-coding RNA MALAT1 in esophageal squamous cell carcinoma (ESCC), but the detailed mechanism remains obscure. Here we identified glyoxalase 1 (GLO1) as the most possible executor of MALAT1 by microarray screening. GLO1 is responsible for degradation of cytotoxic methylglyoxal (MGO), which is by-product of tumor glycolysis. Accumulated MGO may lead to glycation of DNA and protein, resulting in elevated advanced glycation end products (AGEs), while glyoxalase 1 detoxify MGO to alleviate its cytotoxic effect to tumor cells. GLO1 interfering led to accumulation of AGEs and following activation of DNA injury biomarkers, which lead to cell cycle arrest and growth inhibition. In silico analysis based on online database revealed abundant enrichment of histone acetylation marker H3K27ac in GLO1 promotor, and acetyltransferase inhibitor C646 declined GLO1 expression. Acetyltransferase KAT2B, which was also identified as a target of MALAT, mediated histone lysine acetylation of GLO1 promotor, which was confirmed by ChIP-qPCR experiment. Shared binding sites of miR-206 were found on MALAT1 and KAT2B mRNA. Dual-luciferase reporter assays confirmed interaction within MALAT1-miR-206-GLO1. Finally, we identified MALAT1 encapsuled by exosome from donor cells, and transferred malignant behaviors to recipient cells. The secreted exosomes may enter circulation, and serum MALAT1 level combined with traditional tumor markers showed potential power for ESCC diagnosis.

9.
Heliyon ; 10(6): e27451, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38496844

RESUMEN

The role of traditional Chinese medicine (TCM) in treating diseases is receiving increasing attention. Chinese herbal medicine is an important part of TCM with various applications and the active ingredients extracted from Chinese herbal medicines have physiological and pathological effects. Tissue engineering combines cell biology and materials science to construct tissues or organs in vitro or in vivo. TCM has been proposed by the World Health Organization as an effective treatment modality. In recent years, the potential use of TCM in tissue engineering has been demonstrated. In this review, the classification and efficacy of TCM active ingredients and delivery systems are discussed based on the TCM theory. We also summarized the current application status and broad prospects of Chinese herbal active ingredients in different specialized biomaterials in the field of tissue engineering. This review provides novel insights into the integration of TCM and modern Western medicine through the application of Chinese medicine in tissue engineering and regenerative medicine.

10.
J Assist Reprod Genet ; 41(3): 767-779, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38372883

RESUMEN

Coenzyme Q10 (CoQ10) is a natural component widely present in the inner membrane of mitochondria. CoQ10 functions as a key cofactor for adenosine triphosphate (ATP) production and exhibits antioxidant properties in vivo. Mitochondria, as the energy supply center of cells, play a crucial role in germ cell maturation and embryonic development, a complicated process of cell division and cellular differentiation that transforms from a single cell (zygote) to a multicellular organism (fetus). Here, we discuss the effects of CoQ10 on oocyte maturation and the important role of CoQ10 in the growth of various organs during different stages of fetal development. These allowed us to gain a deeper understanding of the pathophysiology of embryonic development and the potential role of CoQ10 in improving fertility quality. They also provide a reference for further developing its application in clinical treatments.


Asunto(s)
Antioxidantes , Ubiquinona , Ubiquinona/análogos & derivados , Humanos , Ubiquinona/farmacología , Antioxidantes/farmacología , Mitocondrias/genética , Desarrollo Embrionario/genética
11.
Curr Med Chem ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38333974

RESUMEN

Tumor protein 53 (P53), as an intracellular regulator of antioxidant responses, participates in the expression of antioxidant defense and lipid metabolism as well as the synthesis of genes in cells. The balance of oxidation and reduction can be disrupted by many pathological conditions, and the role of the antioxidant system in protecting the equilibrium state from pathological effects, such as reactive lipids, is crucial. In particular, the excessive accumulation of lipid peroxidation products is a key factor driving the occurrence and development of various diseases. Ferroptosis is an iron-dependent, lipid peroxidation-driven cell death cascade reaction, which has become a key research area in cardiovascular diseases. Atherosclerosis (AS) is a pathological change caused by lipid metabolic disorder, inflammatory response, and endothelial cell injury, and is the most common cause of cardiovascular disease. This review briefly outlines lipid peroxidation and key components involving ferroptosis cascade reactions, summarizes and emphasizes the role of P53-related signaling pathways in mediating lipid peroxidation and ferroptosis, and focuses on the known P53 target genes that regulate these pathways, as well as explores the possibility of P53 intervention in the treatment of AS by regulating lipid peroxidation and ferroptosis processes.

12.
Curr Med Chem ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38310400

RESUMEN

HuR (Human antigen R) is an RNA binding protein (RBP) that specifically binds to certain RNA sequences, influencing post-transcriptional regulation. HuR is primarily involved in tumor regulation, as well as cell growth, proliferation, inflammation, and angiogenesis. HuR is implicated in endothelial activation, smooth muscle proliferation, inflammatory response, macrophage apoptosis, lipid regulation, and autophagy, playing a crucial regulatory role in atherosclerosis. Accumulating evidence suggests that HuR has dual roles in AS. On the one hand, HuR expedites the development of AS by facilitating endothelial activation, smooth muscle proliferation, and inflammation. On the contrary, it exerts beneficial effects by reducing macrophage apoptosis, regulating lipid efflux, and increasing autophagy. In this review, we aim to provide a comprehensive summary of the role of HuR in the development of AS by examining its involvement in cellular mechanisms, inflammation, autophagy, and apoptosis. Additionally, we discuss the mechanisms of drugs that target HuR, with the goal of offering new perspectives for the treatment of AS.

13.
Atherosclerosis ; 390: 117430, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301602

RESUMEN

BACKGROUND AND AIMS: Tripartite motif (TRIM65) is an important member of the TRIM protein family, which is a newly discovered E3 ligase that interacts with and ubiquitinates various substrates and is involved in diverse pathological processes. However, the function of TRIM65 in atherosclerosis remains unarticulated. In this study, we investigated the role of TRIM65 in the pathogenesis of atherosclerosis, specifically in vascular smooth muscle cells (VSMCs) phenotype transformation, which plays a crucial role in formation of atherosclerotic lesions. METHODS AND RESULTS: Both non-atherosclerotic and atherosclerotic lesions during autopsy were collected singly or pairwise from each individual (n = 16) to investigate the relationship between TRIM65 and the development of atherosclerosis. In vivo, Western diet-fed ApoE-/- mice overexpressing or lacking TRIM65 were used to assess the physiological function of TRIM65 on VSMCs phenotype, proliferation and atherosclerotic lesion formation. In vitro, VSMCs phenotypic transformation was induced by platelet-derived growth factor-BB (PDGF-BB). TRIM65-overexpressing or TRIM65-abrogated primary mouse aortic smooth muscle cells (MOASMCs) and human aortic smooth muscle cells (HASMCs) were used to investigate the mechanisms underlying the progression of VSMCs phenotypic transformation, proliferation and migration. Increased TRIM65 expression was detected in α-SMA-positive cells in the medial and atherosclerotic lesions of autopsy specimens. TRIM65 overexpression increased, whereas genetic knockdown of TRIM65 remarkably inhibited, atherosclerotic plaque development. Mechanistically, TRIM65 overexpression activated PI3K/Akt/mTOR signaling, resulting in the loss of the VSMCs contractile phenotype, including calponin, α-SMA, and SM22α, as well as cell proliferation and migration. However, opposite phenomena were observed when TRIM65 was deficient in vivo or in vitro. Moreover, in cultured PDGF-BB-induced TRIM65-overexpressing VSMCs, inhibition of PI3K by treatment with the inhibitor LY-294002 for 24 h markedly attenuated PI3K/Akt/mTOR activation, regained the VSMCs contractile phenotype, and blocked the progression of cell proliferation and migration. CONCLUSIONS: TRIM65 overexpression enhances atherosclerosis development by promoting phenotypic transformation of VSMCs from contractile to synthetic state through activation of the PI3K/Akt/mTOR signal pathway.


Asunto(s)
Aterosclerosis , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Becaplermina/genética , Becaplermina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Músculo Liso Vascular/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Movimiento Celular , Transducción de Señal , Proliferación Celular , Serina-Treonina Quinasas TOR/metabolismo , Aterosclerosis/patología , Miocitos del Músculo Liso/patología , Fenotipo , Células Cultivadas , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética
14.
Nitric Oxide ; 144: 29-39, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38307376

RESUMEN

This review aims to analyze the developmental trajectory of hydrogen sulfide (H2S) donors over the past three decades and explore the historical background, research hotspots, and emerging trends in related fields from a temporal perspective. A total of 5092 literature articles on H2S donors were retrieved from the Web of Science Core Collection (WoSCC), encompassing 1303 journals, 20638 authors, 10992 institutions, and 459 countries and regions. Utilizing CiteSpace as a bibliometric tool, historical features, evolving active topics, and emerging trends in the field of H2S donors were identified. Over the past 30 years, the field of H2S donors has remained in a prominent stage. This article discusses both inorganic and organic types of H2S donors, including NaHS and Na2S, GYY4137, AP39, and AP123, as well as briefly outlines research and applications of H2S donors in nanotechnology, advanced materials, composite materials, nanostructures, and optical properties. Mechanistically, the review outlines how H2S donors regulate cellular signal transduction, anti-inflammatory responses, neuroprotection, and other pathways within the organism by modulating protein S-sulfhydration, antioxidant effects, and interactions with metal proteins. In terms of applications, the review summarizes the extensive use of H2S donors in biomedical research, encompassing cardiovascular, neurological, anti-inflammatory, and anti-cancer characteristics, as well as their potential applications in the treatment of metabolic diseases. Finally, challenges and limitations faced by H2S donor research are discussed, and potential future research directions are proposed.


Asunto(s)
Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/metabolismo , Antiinflamatorios , Pulmón/metabolismo
15.
Clin Chim Acta ; 552: 117683, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38030030

RESUMEN

During embryonic development, the cardiovascular system and the central nervous system exhibit a coordinated developmental process through intricate interactions. Congenital heart disease (CHD) refers to structural or functional abnormalities that occur during embryonic or prenatal heart development and is the most common congenital disorder. One of the most common complications in CHD patients is neurodevelopmental disorders (NDD). However, the specific mechanisms, connections, and precise ways in which CHD co-occurs with NDD remain unclear. According to relevant research, both genetic and non-genetic factors are significant contributors to the co-occurrence of sporadic CHD and NDD. Genetic variations, such as chromosomal abnormalities and gene mutations, play a role in the susceptibility to both CHD and NDD. Further research should aim to identify common molecular mechanisms that underlie the co-occurrence of CHD and NDD, possibly originating from shared genetic mutations or shared gene regulation. Therefore, this review article summarizes the current advances in the genetics of CHD co-occurring with NDD, elucidating the application of relevant gene detection techniques. This is done with the aim of exploring the genetic regulatory mechanisms of CHD co-occurring with NDD at the gene level and promoting research and treatment of developmental disorders related to the cardiovascular and central nervous systems.


Asunto(s)
Sistema Cardiovascular , Cardiopatías Congénitas , Trastornos del Neurodesarrollo , Humanos , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/diagnóstico , Corazón , Mutación , Trastornos del Neurodesarrollo/genética
16.
Nitric Oxide ; 142: 47-57, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38049061

RESUMEN

BACKGROUND: Endothelial-mesenchymal transition (EndMT) induced by low shear stress plays an important role in the development of atherosclerosis. However, little is known about the correlation between hydrogen sulfide (H2S), a protective gaseous mediator in atherosclerosis and the process of EndMT. METHODS: We constructed a stable low-shear-stress-induced(2 dyn/cm2) EndMT model, acombined with the pretreatment method of hydrogen sulfide slow release agent(GYY4137). The level of MEST was detected in the common carotid artery of ApoE-/- mice with local carotid artery ligation. The effect of MEST on atherosclerosis development in vivo was verified using ApoE-/- mice were given tail-vein injection of endothelial-specific overexpressed and knock-down MEST adeno-associated virus (AAV). RESULTS: These findings confirmed that MEST is up-regulated in low-shear-stress-induced EndMT and atherosclerosis. In vivo experiments showed that MEST gene overexpression significantly promoted EndMT and aggravated the development of atherosclerotic plaques and MEST gene knockdown significantly inhibited EndMT and delayed the process of atherosclerosis. In vitro, H2S inhibits the expression of MEST and EndMT induced by low shear stress and inhibits EndMT induced by MEST overexpression. Knockdown of NFIL3 inhibit the up regulation of MEST and EndMT induced by low shear stress in HUVECs. CHIP-qPCR assay and Luciferase Reporter assay confirmed that NFIL3 binds to MEST DNA, increases its transcription and H2S inhibits the binding of NFIL3 and MEST DNA, weakening NFIL3's transcriptional promotion of MEST. Mechanistically, H2S increased the sulfhydrylation level of NFIL3, an important upstream transcription factors of MEST. In part, transcription factor NFIL3 restrain its binding to MEST DNA by sulfhydration. CONCLUSIONS: H2S negatively regulate the expression of MEST by sulfhydrylation of NFIL3, thereby inhibiting low-shear-stress-induced EndMT and atherosclerosis.


Asunto(s)
Aterosclerosis , Sulfuro de Hidrógeno , Ratones , Animales , Humanos , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Transición Endotelial-Mesenquimatosa , Aterosclerosis/genética , Aterosclerosis/metabolismo , Endotelio/metabolismo , ADN/metabolismo , Apolipoproteínas E/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Transición Epitelial-Mesenquimal
17.
Mol Cell Biochem ; 479(4): 779-791, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37178375

RESUMEN

Cardiovascular disease (CVD) has a high incidence and low cure rate worldwide, and atherosclerosis (AS) is the main factor inducing cardiovascular disease, of which lipid deposition in the vessel wall is the main marker of AS. Currently, although statins can be used to lower lipids and low-density lipoprotein (LDL) in AS, the cure rate for AS remains low. Therefore, there is an urgent need to develop new therapeutic approaches, and stem cells are now widely studied, while stem cells are a class of cell types that always maintain the ability to differentiate and can differentiate to form other cells and tissues, and stem cell transplantation techniques have shown efficacy in the treatment of other diseases. With the establishment of cellular therapies and continued research in stem cell technology, stem cells are also being used to address the problem of AS. In this paper, we focus on recent research advances in stem cell therapy for AS and briefly summarize the relevant factors that induce the formation of AS. We mainly discuss the efficacy and application prospects of mesenchymal stem cells (MSCs) for the treatment of AS, in addition to the partial role and potential of exosomes in the treatment of AS. Further, provide new ideas for the clinical application of stem cells.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Exosomas , Trasplante de Células Madre Mesenquimatosas , Humanos , Enfermedades Cardiovasculares/metabolismo , Trasplante de Células Madre , Aterosclerosis/terapia , Aterosclerosis/metabolismo , Exosomas/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos
18.
Curr Med Chem ; 31(10): 1251-1264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36788688

RESUMEN

Coronary atherosclerotic disease (CAD) is a common cardiovascular disease and an important cause of death. Moreover, endothelial cells (ECs) injury is an early pathophysiological feature of CAD, and long noncoding RNAs (lncRNAs) can modulate gene expression. Recent studies have shown that lncRNAs are involved in the pathogenesis of CAD, especially by regulating ECs. In this review, we summarize the novel progress of lncRNA-modulated ECs in the pathogenesis of CAD, including ECs proliferation, migration, adhesion, angiogenesis, inflammation, apoptosis, autophagy, and pyroptosis. Thus, as lncRNAs regulate ECs in CAD, lncRNAs will provide ideal and novel targets for the diagnosis and drug therapy of CAD.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Células Endoteliales/metabolismo , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/patología , Aterosclerosis/metabolismo , Enfermedades Cardiovasculares/metabolismo
19.
J Cell Biochem ; 125(2): e30512, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38098251

RESUMEN

Circular RNA (circRNA) is a class of RNA with the 5' and 3' ends connected covalently to form a closed loop structure and characterized by high stability, conserved sequences and tissue specificity, which is caused by special reverse splicing methods. Currently, it has become a hot spot for research. With the discovery of its powerful regulatory functions and roles, the molecular mechanisms and future value of circRNA in participating in and regulating biological and pathological processes are becoming increasingly apparent. Among them is the increasing prevalence of cardiovascular diseases (CVDs). Many studies have elucidated that circRNA plays a crucial role in the development and progression of CVDs. Therefore, circRNA shows its advantages and brilliant expectations in the field of CVDs. In this review, we describe the biogenesis, bioinformatics detection and function of circRNA and discuss the role of circRNA and its effects on CVDs, including atherosclerosis, myocardial infarction, cardiac hypertrophy and heart failure, myocardial fibrosis, cardiac senescence, pulmonary hypertension, and diabetic cardiomyopathy by different mechanisms. That shows circRNA advantages and brilliant expectations in the field of CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Humanos , ARN Circular/genética , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Motivación , ARN/genética
20.
Cell Death Discov ; 9(1): 456, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38097554

RESUMEN

MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) is a human paracaspase protein with proteolytic activity via its caspase-like domain. The pharmacological inhibition of MALT1 by MI-2, a specific chemical inhibitor, diminishes the response of endothelial cells to inflammatory stimuli. However, it is largely unknown how MALT1 regulates the functions of vascular smooth muscle cells (SMCs). This study aims to investigate the impact of MALT1 inhibition by MI-2 on the functions of vascular SMCs, both in vitro and in vivo. MI-2 treatment led to concentration- and time-dependent cell death of cultured aortic SMCs, which was rescued by the iron chelator deferoxamine (DFO) or ferrostatin-1 (Fer-1), a specific inhibitor of ferroptosis, but not by inhibitors of apoptosis (Z-VAD-fmk), pyroptosis (Z-YVAD-fmk), or necrosis (Necrostatin-1, Nec-1). MI-2 treatment downregulated the expression of glutathione peroxidase 4 (GPX4) and ferritin heavy polypeptide 1 (FTH1), which was prevented by pre-treatment with DFO or Fer-1. MI-2 treatment also activated autophagy, which was inhibited by Atg7 deficiency or bafilomycin A1 preventing MI-2-induced ferroptosis. MI-2 treatment reduced the cleavage of cylindromatosis (CYLD), a specific substrate of MALT1. Notably, MI-2 treatment led to a rapid loss of contractility in mouse aortas, which was prevented by co-incubation with Fer-1. Moreover, local application of MI-2 significantly reduced carotid neointima lesions and atherosclerosis in C57BL/6J mice and apolipoprotein-E knockout (ApoE-/-) mice, respectively, which were both ameliorated by co-treatment with Fer-1. In conclusion, the present study demonstrated that MALT1 inhibition induces ferroptosis of vascular SMCs, likely contributing to its amelioration of proliferative vascular diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...