Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Sep Sci ; 47(9-10): e2300867, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38726736

RESUMEN

Shengxian decoction, a traditional Chinese medicinal prescription, has been shown to alleviate doxorubicin-induced chronic heart failure. This study established an ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry method to separate and characterize the complex chemical compositions of Shengxian decoction, and the absorbed compounds in the bio-samples of the cardiotoxicity rats with chronic heart failure after its oral delivery. Note that 116 chemical compounds were identified from Shengxian decoction in vitro, 81 more than previously detected. Based on the three-dimensional data of these compounds, 28 absorbed compounds were confirmed in vivo. Network pharmacology and molecular docking experiments indicated that timosaponin B-II, timosaponin A-III, gitogenin, and 7,8-didehydrocimigenol were recognized as the key effective compounds to exert effects against doxorubicin cardiotoxicity by acting on targets such as caspase 3, cyclin-dependent kinase 1, cyclin-dependent kinase 4, receptor tyrosine-protein kinase erbB-2, and mitogen-activated protein kinase 1 in p53 and phosphatidylinositol 3-kinase-Akt signaling pathways. This study developed the understanding of the composition of Shengxian decoction for the treatment of doxorubicin cardiotoxicity, as well as a feasible strategy to elucidate the effective constituents in traditional Chinese medicines.


Asunto(s)
Doxorrubicina , Medicamentos Herbarios Chinos , Farmacología en Red , Ratas Sprague-Dawley , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/análisis , Animales , Ratas , Cromatografía Líquida de Alta Presión , Masculino , Espectrometría de Masas , Cardiotoxicidad , Simulación del Acoplamiento Molecular , Combinación de Medicamentos
2.
Drug Des Devel Ther ; 18: 881-897, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529263

RESUMEN

Purpose: The aim of this study was to verify the effectiveness and explore the mechanism of Chaihu-Guizhi-Ganjiang decoction (CGGD) in the treatment of chronic non-atrophic gastritis (CNAG) with gallbladder heat and spleen cold syndrome (GHSC) by metabolomics based on UHPLC-Q-TOF/MS. Patients and Methods: An observational controlled before-after study was conducted to verify the effectiveness of CGGD in the treatment of CNAG with GHSC from January to June 2023, enrolling 27 patients, who took CGGD for 28 days. 30 healthy volunteers were enrolled as the controls. The efficacy was evaluated by comparing the traditional Chinese medicine (TCM) syndrome and CNAG scores, and clinical parameters before and after treatment. The plasma levels of hormones related to gastrointestinal function were collected by ELISA. The mechanisms of CGGD in the treatment of CNAG with GHSC were explored using a metabolomic approach based on UHPLC-Q-TOF/MS. Results: Patients treated with CGGD experienced a statistically significant improvement in TCM syndrome and CNAG scores (p < 0.01). CGGD treatment evoked the concentration alteration of 15 biomarkers, which were enriched in the glycerophospholipid metabolism, and branched-chain amino acids biosynthesis pathways. Moreover, CGGD treatment attenuated the abnormalities of the gastrointestinal hormone levels and significantly increased the pepsinogen level. Conclusion: It was the first time that this clinical trial presented detailed data on the clinical parameters that demonstrated the effectiveness of CGGD in the treatment of CNAG with GHSC patients. This study also provided supportive evidence that CNAG with GHSC patients were associated with disturbed branched-chain amino acid metabolism and glycerophospholipid levels, suggesting that CNAG treatment based on TCM syndrome scores was reasonable and also provided a potential pharmacological mechanism of action of CGGD.


Asunto(s)
Medicamentos Herbarios Chinos , Gastritis Atrófica , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Vesícula Biliar , Gastritis Atrófica/tratamiento farmacológico , Glicerofosfolípidos , Calor , Bazo , Estudios Controlados Antes y Después , Estudios de Casos y Controles
3.
Phytomedicine ; 114: 154740, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36965373

RESUMEN

BACKGROUND: As a multifaceted metabolic disorder, insulin resistance is accompanied by the preceding onset of type 2 diabetes mellitus, hyperinsulinemia, metabolic dysfunction-associated fatty liver disease (MAFLD) and other metabolic syndromes. Currently, the number of existing drugs and mechanism-based strategies is limited to alleviate insulin resistance in clinics. As a natural polyphenol product derivative, 1,3,6,7-tetrapropylene acyloxy-ketone (TPX) showed a significant hypoglycemic effect in our previous studies. However, whether TPX could improve hepatic insulin sensitivity was unknown. PURPOSE: To explore whether insulin sensitivity can be improved by the treatment with TPX and further investigate its mechanism(s) of activity. METHODS: To mimic hyperglycemia and insulin resistance in vitro, human HepG2 and HL-7702 hepatocytes were exposed to high glucose. Cellular glucose uptake, glucose consumption, glycogen synthesis, and glucose production were quantified after TPX treatment. The effects of TPX on AMP-activated protein kinase (AMPK) phosphorylation, glucose metabolism, and insulin signal transduction were evaluated by western blotting and network pharmacology analysis. The eGFP-membrane of glucose transporter type 4 (GLUT4) lentivirus transfected cells were constructed to investigate the effects of TPX on GLUT4 mobilization. Reactive oxygen species activity in high glucose-induced insulin-resistant cells was measured by DCFH-DA to show oxidative stress. RESULTS: Treatment with TPX improved glycogen synthesis and inhibited gluconeogenesis by regulating GSK3ß, G6Pase, and PEPCK. Furthermore, high glucose-induced inhibition of glucose consumption, glucose uptake, and GLUT4-mediated membrane translocation were reverted by TPX. Accordingly, mechanistic investigations revealed that TPX interacted with AMPK protein and activated the phosphorylation of AKT, thereby improving energy homeostasis and further ameliorating hepatic insulin resistance. Network pharmacology analysis and molecular docking further confirmed AMPK as an active target of TPX. Concordantly, the pharmacological activity of TPX was reversed by the AMPK inhibitor compound C when hepatocytes were exposed to high glucose stimulation. CONCLUSION: In summary, our study confirmed TPX contributions to insulin resistance improvements by targeting AMPK and PI3K/AKT to restore the insulin signaling pathway, which may be an important potential treatment strategy for insulin-resistance-related diseases, including MAFLD and diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Hepatocitos , Transducción de Señal , Glucosa/metabolismo , Insulina/metabolismo , Glucógeno/metabolismo
4.
ACS Omega ; 7(41): 36598-36610, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36268464

RESUMEN

This work was aimed to elucidate the mechanism of action of Han-Shi-Yu-Fei-decoction (HSYFD) for treating patients with mild coronavirus disease 2019 (COVID-19) based on clinical symptom-guided network pharmacology. Experimentally, an ultra-high performance liquid chromatography technique coupled with quadrupole time-of-flight mass spectrometry method was used to profile the chemical components and the absorbed prototype constituents in rat serum after its oral administration, and 11 out of 108 compounds were identified. Calculatingly, the disease targets of Han-Shi-Yu-Fei symptoms of COVID-19 were constructed through the TCMIP V2.0 database. The subsequent network pharmacology and molecular docking analysis explored the molecular mechanism of the absorbed prototype constituents in the treatment of COVID-19. A total of 42 HSYFD targets oriented by COVID-19 clinical symptom were obtained, with EGFR, TP53, TNF, JAK2, NR3C1, TH, COMT, and DRD2 as the core targets. Enriched pathway analysis yielded multiple COVID-19-related signaling pathways, such as the PI3K/AKT signaling pathway and JAK-STAT pathway. Molecular docking showed that the key compounds, such as 6-gingerol, 10-gingerol, and scopoletin, had high binding activity to the core targets like COMT, JAK2, and NR3C1. Our work also verified the feasibility of clinical symptom-guided network pharmacology analysis of chemical compounds, and provided a possible agreement between the points of views of traditional Chinese medicine and western medicine on the disease.

5.
Biomed Pharmacother ; 144: 112354, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34794233

RESUMEN

Shengxian Decotion (SXT), a well-known Traditional Chinese Medicine (TCM) formula composed of Astragali Radix, Bupleuri Radix, Cimicifugae Rhizoma, Anemarrhenae Rhizoma and Platycodonis Radix, is clinically considered as an effective formula against cardiovascular diseases. However, the exact effective substance of SXT in treating chronic heart failure (CHF) still remains unclear. In the current study, we investigated the benefit of SXT in doxorubicin (DOX)-induced CHF rats and established a UHPLC-MS/MS method to simultaneously determine 18 key compounds in a subsequent comparative pharmacokinetic study in normal and CHF rats. Histopathological studies, transmission electron microscopy, and echocardiography were applied to assess the therapeutic effect of SXT on DOX-induced CHF rats, which indicated that SXT significantly ameliorated DOX-induced CHF, similar to enalapril. In addition, we successfully established a UHPLC-MS/MS method to determine the pharmacokinetics of the components in rat plasma, which was validated with good linearity, inter-day and intra-day precisions and accuracies, matrix effects, extraction recovery, and stability values. Our results showed that only astragaloside IV showed increased plasma exposure in the CHF rats, while saikosaponin A, quercetin, timosaponin B-II, ferulic acid, isoferulic acid and formononetin decreased compared to their pharmacokinetic characteristics in the normal and CHF rats. This study demonstrates that SXT enjoys obvious therapeutic effect on DOX-induced CHF rats, and the altered metabolism of some compounds in SXT is affected by the pathological state of CHF rats. Our findings provide a better understanding of the in vivo exposure to complex compounds of SXT, supporting effective substance screening and further investigation of the therapeutic mechanism.


Asunto(s)
Fármacos Cardiovasculares/farmacocinética , Fármacos Cardiovasculares/uso terapéutico , Medicamentos Herbarios Chinos/farmacocinética , Medicamentos Herbarios Chinos/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Animales , Astragalus propinquus , Cromatografía Líquida de Alta Presión , Enfermedad Crónica , Electrocardiografía/efectos de los fármacos , Insuficiencia Cardíaca/inducido químicamente , Masculino , Espectrometría de Masas , Medicina Tradicional China , Ratas , Ratas Sprague-Dawley , Saponinas/sangre , Triterpenos/sangre
6.
Zhongguo Zhong Yao Za Zhi ; 46(10): 2489-2500, 2021 May.
Artículo en Chino | MEDLINE | ID: mdl-34047095

RESUMEN

This study aimed to elucidate the effective components of Shengxian Decoction and its mechanism of action in treating chronic heart failure. Firstly, UHPLC-Q-TOF-MS was established to identify the main chemical constituents in the rat serum after intragastric administration with Shengxian Decoction. Secondly, the absorbed components in serum were then used for the network pharmacology analysis to infer the mechanism and effective components. Targets for constituents in serum were predicted at TCMSP and Swiss-TargetPrediction database. An association network map was drawn by network visualization software Cytoscape 3.6.1. Finally, GO enrichment analysis and KEGG pathway enrichment analysis were carried out for the core target genes. By UHPLC-Q-TOF-MS, 18 prototype compounds were definitely identified, including five compounds from Astragali Radix, four compounds from Anemarrhenae Rhizoma, four compounds from Bupleuri Radix, four compounds from Cimicifugae Rhizoma, and one compound from Platycodonis Radix. Those components of Shengxian Decoction were closely associated with 13 key protein targets, including inflammatory factors, like IL6, IL1 B, TNF, PTGS2, IL10; redox enzymes CAT, HMOX1, and MPO; cardiovascular targets, like VEGFA, NOS3, and NOS2; and transmememial proteins CAV1 and INS. Network pharmacology analysis showed that the 18 compounds could be responsible for the treatment of chronic heart failure by regulating HIF-1 signaling pathways, PI3 K-Akt signaling pathways, cGMP-PKG signaling pathways, cAMP signaling pathways and TNF signaling pathways. This study provided a scientific basis for mechanism and effective ingredients of Shengxian Decoction.


Asunto(s)
Medicamentos Herbarios Chinos , Insuficiencia Cardíaca , Animales , Cromatografía Líquida de Alta Presión , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/genética , Ratas , Rizoma , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA