Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
Science ; 384(6700): 1126-1134, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38843338

RESUMEN

The light-emitting diodes (LEDs) used in indoor testing of perovskite solar cells do not expose them to the levels of ultraviolet (UV) radiation that they would receive in actual outdoor use. We report degradation mechanisms of p-i-n-structured perovskite solar cells under unfiltered sunlight and with LEDs. Weak chemical bonding between perovskites and polymer hole-transporting materials (HTMs) and transparent conducting oxides (TCOs) dominate the accelerated A-site cation migration, rather than direct degradation of HTMs. An aromatic phosphonic acid, [2-(9-ethyl-9H-carbazol-3-yl)ethyl]phosphonic acid (EtCz3EPA), enhanced bonding at the perovskite/HTM/TCO region with a phosphonic acid group bonded to TCOs and a nitrogen group interacting with lead in perovskites. A hybrid HTM of EtCz3EPA with strong hole-extraction polymers retained high efficiency and improved the UV stability of perovskite devices, and a champion perovskite minimodule-independently measured by the Perovskite PV Accelerator for Commercializing Technologies (PACT) center-retained operational efficiency of >16% after 29 weeks of outdoor testing.

2.
Eur J Med Res ; 29(1): 227, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609963

RESUMEN

BACKGROUND AND AIM: Previous observational investigations have indicated a potential association between relative dietary macronutrient intakes and atrial fibrillation and flutter (AF) risk. In this study, we employed Mendelian Randomization (MR) to evaluate the presence of causality and to elucidate the specific causal relationship. METHODS: We employed six, five, and three single nucleotide polymorphisms (SNPs) as instrumental variables for relative carbohydrate, protein, and fat intake, identified from a genome-wide association study that included 268,922 individuals of European descent. Furthermore, we acquired summary statistics for genome-wide association studies on AF from the FinnGen consortium, which involved 22,068 cases and 116,926 controls. To evaluate the causal estimates, we utilized the random effect inverse variance weighted method (IVW) and several other MR methods, including MR-Egger, weighted median, and MR-PRESSO, to confirm the robustness of our findings. RESULTS: Our analysis indicates a convincing causal relationship between genetically predicted relative carbohydrate and protein intake and reduced AF risk. Inverse variance weighted analysis results for carbohydrates (OR = 0.29; 95% CI (0.14, 0.59); P < 0.001) and protein (OR = 0.47; 95% CI (0.26, 0.85); P = 0.01) support this association. Our MR analysis did not identify a significant causal relationship between relative fat intake and AF risk. CONCLUSION: Our study provides evidence supporting a causal relationship between higher relative protein and carbohydrate intake and a lower risk of atrial fibrillation (AF).


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Ingestión de Alimentos , Carbohidratos
3.
Front Neurol ; 14: 1165145, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693756

RESUMEN

Background: Non-invasive brain stimulation (NIBS) techniques are now widely used in patients with disorders of consciousness (DOC) for accelerating their recovery of consciousness, especially minimally conscious state (MCS). However, the effectiveness of single NIBS techniques for consciousness rehabilitation needs further improvement. In this regard, we propose to enhance from bottom to top the thalamic-cortical connection by using transcutaneous auricular vagus nerve stimulation (taVNS) and increase from top to bottom cortical-cortical connections using simultaneous high-definition transcranial direct current stimulation (HD-tDCS) to reproduce the network of consciousness. Methods/design: The study will investigate the effect and safety of simultaneous joint stimulation (SJS) of taVNS and HD-tDCS for the recovery of consciousness. We will enroll 84 MCS patients and randomize them into two groups: a single stimulation group (taVNS and HD-tDCS) and a combined stimulation group (SJS and sham stimulation). All patients will undergo a 4-week treatment. The primary outcome will be assessed using the coma recovery scale-revised (CRS-R) at four time points to quantify the effect of treatment: before treatment (T0), after 1 week of treatment (T1), after 2 weeks of treatment (T2), and after 4 weeks of treatment (T3). At the same time, nociception coma scale-revised (NCS-R) and adverse effects (AEs) will be collected to verify the safety of the treatment. The secondary outcome will involve an analysis of electroencephalogram (EEG) microstates to assess the response mechanisms of dynamic brain networks to SJS. Additionally, CRS-R and AEs will continue to be obtained for a 3-month follow-up (T4) after the end of the treatment. Discussion: This study protocol aims to innovatively develop a full-time and multi-brain region combined neuromodulation paradigm based on the mesocircuit model to steadily promote consciousness recovery by restoring thalamocortical and cortical-cortical interconnections.

4.
Science ; 380(6647): 823-829, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37228201

RESUMEN

The defective bottom interfaces of perovskites and hole-transport layers (HTLs) limit the performance of p-i-n structure perovskite solar cells. We report that the addition of lead chelation molecules into HTLs can strongly interact with lead(II) ion (Pb2+), resulting in a reduced amorphous region in perovskites near HTLs and a passivated perovskite bottom surface. The minimodule with an aperture area of 26.9 square centimeters has a power conversion efficiency (PCE) of 21.8% (stabilized at 21.1%) that is certified by the National Renewable Energy Laboratory (NREL), which corresponds to a minimal small-cell efficiency of 24.6% (stabilized 24.1%) throughout the module area. Small-area cells and large-area minimodules with lead chelation molecules in HTLs had a light soaking stability of 3010 and 2130 hours, respectively, at an efficiency loss of 10% from the initial value under 1-sun illumination and open-circuit voltage conditions.

5.
Water Air Soil Pollut ; 234(5): 292, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122824

RESUMEN

The temporal and spatial variation characteristics of air quality index (AQI) in major cities in China were explored in this paper using statistical analysis, hot spot analysis, spatial autocorrelation, mean center, and geographic detector based on the daily AQI data from 2014 to 2020. The results show that ① the annual AQI average value dropped from 94 to 67 from 2014 to 2020. The percentage of cities with daily AQI excellent rates between 0.8 and 1 is significantly increasing, reaching 77% in 2020. ② AQI is highest and lowest in winter and summer, respectively. The trend of the monthly AQI average value is roughly in a U shape. Moreover, the AQI in January and December is high, and the AQI in August and September is low. ③ The spatial distribution of the annual AQI average in China's major cities shows agglomeration effects. The hot spots are distributed in North China and Xinjiang, and the cold spots are mainly distributed in the northeast and southern regions of China. ④ The average center of the annual AQI average of major cities in China was distributed in Sanmenxia City and Luoyang City, Henan Province, from 2014 to 2020 with a relatively small mean center migration range. ⑤ Based on the geographical detector model, the impact of total precipitation, 10-m u component of wind, 10-m v component of wind, surface pressure, and 2-m temperature on AQI is analyzed, and it is concluded that 2-m temperature has the greatest impact on AQI. Meanwhile, it is explored that GDP and population density have a certain impact on air quality. Therefore, analyzing the temporal and spatial characteristics of air quality provides some scientific basis for the regional collaborative governance of air pollution and the in-depth fight against pollution in China.

6.
Front Neurosci ; 17: 1145699, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008222

RESUMEN

Background: Transcutaneous auricular vagus nerve stimulation (taVNS) is a non-invasive neuromodulation technique. Several studies have reported the effectiveness of taVNS in patients with disorders of consciousness (DOC); however, differences in the modulation paradigm have led to inconsistent treatment outcomes. Methods/design: This prospective exploratory trial will include 15 patients with a minimally conscious state (MCS) recruited according to the coma recovery scale-revised (CRS-R). Each patient will receive 5 different frequencies of taVNS (1, 10, 25, 50, and 100 Hz); sham stimulation will be used as a blank control. The order of stimulation will be randomized, and the patients' CRS-R scores and resting electroencephalography (EEG) before and after stimulation will be recorded. Discussion: The overall study of taVNS used in treating patients with DOC is still in the preliminary stage of exploration. Through this experiment, we aim to explore the optimal stimulation frequency parameters of taVNS for the treatment of DOC patients. Furthermore, we expect to achieve a stable improvement of consciousness in DOC patients by continuously optimizing the neuromodulation paradigm of taVNS for the treatment of DOC patients. Clinical trial registration: https://www.chictr.org.cn/index.aspx, identifier ChiCTR 2200063828.

7.
Sci Adv ; 8(48): eabq4524, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459551

RESUMEN

Stabilizing perovskite solar cells requires consideration of all defective sites in the devices. Substantial efforts have been devoted to interfaces, while stabilization of grain boundaries received less attention. Here, we report on a molecule tributyl(methyl)phosphonium iodide (TPI), which can convert perovskite into a wide bandgap one-dimensional (1D) perovskite that is mechanically robust and water insoluble. Mixing TPI with perovskite precursor results in a wrapping of perovskite grains with both grain surfaces and grain boundaries converted into several nanometer-thick 1D perovskites during the grain formation process as observed by direct mapping. The grain wrapping passivates the grain boundaries, enhances their resistance to moisture, and reduces the iodine released during light soaking. The perovskite films with wrapped grains are more stable under heat and light. The best device with wrapped grains maintained 92.2% of its highest efficiency after light soaking under 1-sun illumination for 1900 hours at 55°C open-circuit condition.

8.
Sci Adv ; 8(36): eabq8345, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36070394

RESUMEN

Understanding carrier recombination processes in metal halide perovskites is fundamentally important to further improving the efficiency of perovskite solar cells, yet the accurate recombination velocity at grain boundaries (GBs) has not been determined. Here, we report the determination of carrier recombination velocities at GBs (SGB) of polycrystalline perovskites by mapping the transient photoluminescence pattern change induced by the nonradiative recombination of carriers at GBs. Charge recombination at GBs is revealed to be even stronger than at surfaces of unpassivated films, with average SGB reaching 2200 to 3300 cm/s. Regular surface treatments do not passivate GBs because of the absence of contact at GBs. We find a surface treatment using tributyl(methyl)phosphonium dimethyl phosphate that can penetrate into GBs by partially dissolving GBs and converting it into one-dimensional perovskites. It reduces the average SGB by four times, with the lowest SGB of 410 cm/s, which is comparable to surface recombination velocities after passivation.

9.
Adv Mater ; 34(30): e2202954, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35652351

RESUMEN

Perovskite solar cells (PSCs) are promising to reduce the cost of photovoltaic system due to their low-cost raw materials and high-throughput solution process; however, fabrication of all the active layers in perovskite modules using a scalable solution process has not yet been demonstrated. Herein, the fabrication of highly efficient PSCs and modules in ambient conditions is reported, with all layers bladed except the metal electrode, by blading a 36 ± 9 nm-thick electron-transport layer (ETL) on perovskite films with a roughness of ≈80 nm. A combination of additives in phenyl-C61 -butyric acid methyl ester (PCBM) allows the PCBM to conformally cover the perovskites and still have a good electrical conductivity. Amine-functionalized molecules are added to enhance both the dispersity of PCBM and the affinity to perovskites. A PCBM dopant of 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI) recovers the conductivity loss induced by the small amine molecules. PSCs (0.08 cm2 ) fabricated by the all-blading process reache an average efficiency of 22.4 ± 0.5% and a champion efficiency of 23.1% for perovskites with a bandgap of 1.51 eV, with much better stability compared to evaporated ETL PSCs. The all-bladed minimodule (25.03 cm2 ) shows an aperture efficiency of ≈19.3%, showing the good uniformity of the bladed ETLs.

10.
Science ; 373(6557): 902-907, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34413234

RESUMEN

The interfaces of perovskite solar cells (PSCs) are important in determining their efficiency and stability, but the morphology and stability of imbedded perovskite-substrate interfaces have received less attention than have top interfaces. We found that dimethyl sulfoxide (DMSO), which is a liquid additive broadly applied to enhance perovskite film morphology, was trapped during film formation and led to voids at perovskite-substrate interfaces that accelerated the film degradation under illumination. Partial replacement of DMSO with solid-state carbohydrazide reduces interfacial voids. A maximum stabilized power conversion efficiency (PCE) of 23.6% was realized for blade-coated p-type/intrinsic/n-type (p-i-n) structure PSCs with no efficiency loss after 550-hour operational stability tests at 60°C. The perovskite mini-modules showed certified PCEs of 19.3 and 19.2%, with aperture areas of 18.1 and 50.0 square centimeters, respectively.

11.
Nat Commun ; 10(1): 1112, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30846692

RESUMEN

Further minimizing the defect state density in the semiconducting absorber is vital to boost the power conversion efficiency of solar cells approaching Shockley-Queisser limit. However, it lacks a general strategy to control the precursor chemistry for defects density reduction in the family of iodine based perovskite. Here the alkaline environment in precursor solution is carefully investigated as an effective parameter to suppress the incident iodine and affects the crystallization kinetics during film fabrication, via rationale adjustment of the alkalinity of additives. Especially, a 'residual free' weak alkaline is proposed not only to shrink the bandgap of the absorber by modulating the stoichiometry of organic cation, but also to improve the open circuit voltage in the resultant device. Consequently, the certified efficiency of 20.87% (Newport) is achieved with one of the smallest voltage deficits of 413 mV in the planar heterojunction perovskite solar cell.

12.
Adv Mater ; 29(23)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28417481

RESUMEN

Minimization of defects in absorber materials is essential for hybrid perovskite solar cells, especially when constructing thick polycrystalline layers in a planar configuration. Here, a simple methylamine solution-based additive is reported to improve film quality with nearly an order of magnitude reduction in intrinsic defect concentration. In the resultant film, an increase in carrier lifetime as a result of a decrease in shallow electronic disorder is observed. This superior crystalline film quality is further evidenced via a doubled spin relaxation time as compared with other reports. Bearing sufficient carrier diffusion length, a thick absorber layer (≈650 nm) is implemented in planar devices to achieve a champion power conversion efficiency of 20.02% with a stabilized output efficiency of 19.01% under one sun illumination. This work demonstrates a simple approach to improve hybrid perovskite film quality by substantial reduction of intrinsic defects for wide applications in optoelectronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...