Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biochem Mol Toxicol ; 36(9): e23120, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35670589

RESUMEN

Bisphenol A (BPA), as a widely used plasticizer, is easily absorbed by animals and humans. It has certain toxic effects on various tissues, including liver, heart, kidney, testis, and ovary. The toxic effects of BPA on animal reproduction have aroused widespread concern, but its regulatory mechanism and antidote in female animals estrus cycle remain unclear. In this study, the results displayed that BPA destroyed the normal estrus cycle of mice through decreasing the levels of progesterone and estradiol. Furthermore, BPA significantly increased the levels of oxidative stress, autophagy, and apoptosis in ovaries and granulosa cells. Interestingly, we found that the natural antioxidant resveratrol rescued estrus disorder and impaired estradiol secretion, reduced the abnormal reactive oxygen species accumulation, autophagy, and apoptosis in BPA exposed ovarian tissues. Moreover, transmission electron microscopy showed that resveratrol reduced BPA-induced autophagic vesicles formation and flow cytometry showed that resveratrol inhibited the increase of apoptotic cells induced by BPA on granulosa cells. Therefore, the supplement of resveratrol could restore BPA-induced estrus disorder by protecting ovarian granulosa cells. Overall, resveratrol is a potential drug to alleviate BPA-induced estrous cycle disorders and ovarian damage.


Asunto(s)
Antioxidantes , Progesterona , Animales , Antídotos , Antioxidantes/metabolismo , Antioxidantes/farmacología , Apoptosis , Autofagia , Compuestos de Bencidrilo/toxicidad , Estradiol/farmacología , Estro , Femenino , Humanos , Masculino , Ratones , Estrés Oxidativo , Fenoles , Plastificantes/farmacología , Progesterona/farmacología , Especies Reactivas de Oxígeno , Resveratrol/farmacología
2.
Sci Total Environ ; 799: 149470, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34371413

RESUMEN

Present concerns on the residual benzoylurea pesticides (BUPs) are rapidly climbing as their market shares increase and now seven typical compounds were picked to study their photo-degradation behavior and ecological impacts. Carbon nitride (C3N4) nanofilm at a thickness of 50-80 nm was built on the glass slides and utilized to evaluate the photostability of pesticides under visible light. The results showed that the nano-C3N4 can promote the degradation efficiency of BUPs and it follows the first-order dynamic mechanism. They could be divided into three categories with the substituents and their degradations were discriminated in order of chlorofluoro-, chlorofluoroalkoxy- and chlorofluorophenoxy- substituted ones. Analyzing the intermediates by UHPLC-MS, it can be speculated that the similar pathways came to BUPs such as cleavage of urea-bridge, hydroxylation and dehalogenation. It is attractive that they all passed into a same molecule, 2-fluorobenzamide (m/z, 301.14). Moreover Scendesmus obliquus was applied to indicate the ecological impacts of originals and their photoproducts. Exposed to pesticides, the levels of chlorophyll a demonstrated much more inhibition than chlorophyll b. Lufenuron and chlorfuazuron among seven showed the higher toxicity for algal cells and finally the photodegradation products showed the lowest toxicity. The activities of antioxidant enzymes happened to a significant remedy after photodegradation. It can be concluded that the residual BUPs under visible-light irradiation may degrade through similar pathways and reduce the aquatic toxicity with the presence of C3N4 nanofilm.


Asunto(s)
Plaguicidas , Catálisis , Clorofila A , Luz , Plaguicidas/toxicidad , Fotólisis
3.
Reprod Toxicol ; 104: 8-15, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34182086

RESUMEN

Malathion is a high-efficiency organic phosphorus broad-spectrum insecticide which is commonly used in agricultural production, sanitation and epidemic prevention. Although the toxic effects of malathion on animal reproduction have been partially evaluated, its function, regulatory mechanism and antidote in estrus cycle and reproductive damage remain generally unclear. Here, the results showed that malathion disrupted the normal estrus cycle in mice, reduced the secretion of ovarian hormones, increased the amount of reactive oxygen species (ROS), and promoted autophagy and apoptosis in the ovary. Interestingly, we found that an antioxidant resveratrol could inhibit the disorders of estrus cycle and steroid hormone synthesis, reduced the abnormality of ROS accumulation, autophagy and apoptosis in malathion-exposed ovarian tissue. Furthermore, compared with those of the control group, malathion induced autophagy and apoptosis in the granular cells, whereas resveratrol attenuated these effects of malathion. Therefore, disadvantages of malathion exposure on estrus cycle disorder could partly reverse by resveratrol supplement. Overall, resveratrol may be a potential drug to prevent malathion-induced ovarian damages and estrus cycle disorder. Our findings provide new insights into ovarian response to malathion and resveratrol exposure.


Asunto(s)
Insecticidas/toxicidad , Malatión/toxicidad , Sustancias Protectoras/farmacología , Resveratrol/farmacología , Animales , Antioxidantes , Apoptosis , Autofagia , Estro/efectos de los fármacos , Femenino , Ratones , Ovario , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno
4.
Ecotoxicol Environ Saf ; 191: 110162, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31935557

RESUMEN

It is essential and challenged to understand the atmospheric arsenic pollution because it is much more complicated than in water and top-soil. Herein the different behavior of arsenic species firstly were discovered within the ambient PM2.5 collected during daytime and nighttime, winter and summer. The diurnal variation of arsenic species in PMs is significantly correlated with the presence of metallic oxides, specifically, ferrous, titanium and zinc oxides, which might play a key role in the process of the photo-oxidation of As(III) to As(V) with the meteorological parameters and regional factors excluded. Subsequently, the photo conversion of arsenite was detected on metal-loaded glass-fiber filters under visible light. The photo-generated superoxide radical was found to be predominantly responsible for the oxidation of As(III). In order to reveal toxicity differences induced by oxidation As(III), HepG2 cells were exposed to various arsenic mixture solution. We found that the antioxidant enzyme activities suppressed with increasing the As(III)/As(V) ratio in total, followed by the accumulation of intracellular ROS level. The glucose consumption and glycogen content also displayed an obvious reduction in insulin-stimulated cells. Compared to the expression levels of IRS-1, AKT and GLUT4, GLUT2 might be more vulnerable to arsenic exposure and lead to the abnormalities of glucose metabolism in HepG2 cells. Taken together, these findings clarify that the health risk posed by inhalation exposure to As-pollution air might be alleviated owing to the photo-driven conversion in presence of metal oxides.


Asunto(s)
Contaminantes Atmosféricos/análisis , Arseniatos/análisis , Arsenitos/análisis , Glucosa/metabolismo , Luz , Metales Pesados/análisis , Material Particulado/análisis , Contaminantes Atmosféricos/efectos de la radiación , Contaminantes Atmosféricos/toxicidad , Arseniatos/efectos de la radiación , Arseniatos/toxicidad , Arsenitos/efectos de la radiación , Arsenitos/toxicidad , Células Hep G2 , Humanos , Exposición por Inhalación/análisis , Modelos Teóricos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Óxidos/análisis , Material Particulado/efectos de la radiación , Material Particulado/toxicidad
5.
Anim Reprod Sci ; 210: 106178, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31635774

RESUMEN

Liquid preservation of boar semen is a preferred method in pig husbandry, and antioxidants to protect against sperm oxidative stress during periods of storage have become the focus of recent research. Through its antioxidant activity, Isatis root polysaccharide (IRPS), a plant extract, can effectively reduce the cellular lipid peroxidation caused by the accumulation of reactive oxygen species inside mitochondria. In the present study, there was examination of the effects of no supplementation (Control) of a semen extender with or supplementation in different concentrations of IRPS (0.2, 0.4, 0.6, 0.8, and 1.2 mg/mL) on sperm quality variables and antioxidant capacity during liquid storage. The results indicate that after prolonged storage (≥ 3 days), the sperm motility was greater in the group supplemented with 0.6 mg/mL IRPS than in the other groups (P < 0.05). The use of this IRPS concentration also resulted in maintanence of acrosome integrity, plasma membrane integrity, mitochondrial membrane potential, and antioxidant capacity of the sperm (P < 0.05). Furthermore, the results of an in vitro fertilization study indicate IRPS at 0.6 mg/mL markedly increased the sperm fertilization capacity (P < 0.01) and embryonic development to the blastocyst stage (P < 0.05). The addition of 0.6 mg/mL IRPS enhanced the antioxidant capacity of boar sperm, resulting in greater preservation of sperm motility and fertilization capacity during liquid storage. These findings indicate that IRPS has the potential to be used as a component of a semen-preserving diluent to maintain sperm quality during storage.


Asunto(s)
Isatis/química , Extractos Vegetales/farmacología , Raíces de Plantas/química , Polisacáridos/farmacología , Espermatozoides/efectos de los fármacos , Porcinos , Animales , Membrana Celular/efectos de los fármacos , Fertilización In Vitro/veterinaria , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Extractos Vegetales/química , Polisacáridos/química , Preservación de Semen/veterinaria , Motilidad Espermática/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA