Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Phytomedicine ; 135: 156135, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39405613

RESUMEN

BACKGROUND: In different tumours, focal adhesion kinase (FAK), a nonreceptor tyrosine kinase, is upregulated and hence, it represents a promising target for cancer therapy. However, the development of FAK kinase inhibitors has faced a number of challenges. It is therefore imperative that new, effective FAK kinase inhibitors be identified promptly. METHODS: Small molecules that target FAK were identified through molecular docking and validated through surface plasmon resonance (SPR) and cell thermal shift analysis. We investigated the pharmacological effects of FAK kinase inhibitors using CCK-8, colony formation, EdU, and Transwell assays and cell cycle analysis. The molecular mechanism was determined via methods such as coimmunoprecipitation, RNA pull-down and RNA immunoprecipitation. RESULTS: Here, we confirmed that diosmin (Dio) is an inhibitor of FAK and demonstrated its anti-proliferative and anti-metastatic effects in lung adenocarcinoma. Mechanistically, Dio inhibited tumour proliferation and metastasis by impeding the catalytic activity of FAK. Dio activated the ubiquitin proteasome pathway to induce Cyclin D1 degradation, while inhibiting tumour proliferation and reversing the epithelial mesenchymal transition (EMT) process by reducing the mRNA stability of Snail, thereby inhibiting cancer metastasis. In addition, the inhibitory effect of Dio on lung adenocarcinoma was validated in a mouse xenograft model. CONCLUSION: These results support the tumour-promoting role of FAK in lung adenocarcinoma by stabilizing Cyclin D1 and Snail and suggest that Dio is a promising candidate for FAK inhibition.

2.
J Inflamm Res ; 17: 5889-5899, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228679

RESUMEN

Purpose: New-onset atrial fibrillation (NOAF) and sepsis-induced coagulopathy (SIC) are severe complications in septic patients. However, the relationship between NOAF and SIC score has not been clearly defined. This study aims to investigate the association between SIC score and NOAF, as well as their effect on mortality in sepsis. Patients and Methods: This study was a two-center retrospective analysis. Medical data were collected from patients diagnosed with sepsis. The patients were divided into NOAF and non-NOAF groups, and the SIC score was calculated for each group. Univariable and multivariable logistic regression analyses were performed to explore the relationship between the SIC score and NOAF, as well as their effects on mortality. The Kaplan-Meier curve was used to assess the survival rate. Results: A total of 2,280 septic patients were included, with 132 (5.7%) suffering from NOAF. Multivariable logistic regression analyses indicated that age, gender, the Acute Physiology and Chronic Health Evaluation II score (APACHE II), heart rate, renal failure, stroke, chronic obstructive pulmonary disease (COPD), and the SIC score were independent risk factors for NOAF in sepsis. Moreover, NOAF was associated with an increased risk of in-hospital mortality, 28-day mortality, and 90-day mortality. These results were consistent across subgroup analyses. Conclusion: The SIC score was an independent risk factor for NOAF in septic patients, and NOAF was an independent risk factor for predicting mortality.

3.
Environ Pollut ; 361: 124857, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39214447

RESUMEN

In this work, a sludge biochar (CA-SBC-300) with efficient activation of peroxymonosulfate (PMS) was prepared by citric acid modification. CA-SBC-300 achieved efficient degradation of naproxen (NPX) (95.5%) within 10 min by activating PMS. This system was highly resilient to common disruptive factors such as inorganic anions, humic acid (HA) and solution pH. The results of XPS and Raman showed that the content of oxygenated functional groups (OFGs) and the degree of defects on the sludge biochar increased after citric acid modification, which may be an important reason for the enhanced catalytic performance of SBC. In the CA-SBC-300/PMS system, 1O2 and O2•- made the main contributions to the degradation of NPX. XPS analysis and DFT calculations demonstrated that C=O/C-O and pyridine N on CA-SBC-300 were the crucial active sites for PMS activation. According to the results of UPLC-MS analysis, three possible pathways for NPX degradation were inferred. This study provided a feasible strategy for sludge resource utilization combined with efficient catalytic degradation of toxic organic contaminants in wastewater.

4.
Thorac Cancer ; 15(26): 1897-1911, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39098998

RESUMEN

BACKGROUND: Patients with non-small cell lung cancer (NSCLC) with liver metastasis have a poor prognosis, and there are no reliable biomarkers for predicting disease progression. Currently, no recognized and reliable prediction model exists to anticipate liver metastasis in NSCLC, nor have the risk factors influencing its onset time been thoroughly explored. METHODS: This study conducted a retrospective analysis of 434 NSCLC patients from two hospitals to assess the association between the risk and timing of liver metastasis, as well as several variables. RESULTS: The patients were divided into two groups: those without liver metastasis and those with liver metastasis. We constructed a nomogram model for predicting liver metastasis in NSCLC, incorporating elements such as T stage, N stage, M stage, lack of past radical lung cancer surgery, and programmed death ligand 1 (PD-L1) levels. Furthermore, NSCLC patients with wild-type EGFR, no prior therapy with tyrosine kinase inhibitors (TKIs), and no prior radical lung cancer surgery showed an elevated risk of early liver metastasis. CONCLUSION: In conclusion, the nomogram model developed in this study has the potential to become a simple, intuitive, and customizable clinical tool for assessing the risk of liver metastasis in NSCLC patients following validation. Furthermore, it provides a framework for investigating the timing of metachronous liver metastasis.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Hepáticas , Neoplasias Pulmonares , Nomogramas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Masculino , Femenino , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/patología , Persona de Mediana Edad , Estudios Retrospectivos , Biomarcadores de Tumor/metabolismo , Anciano , Pronóstico , Adulto
5.
J Am Chem Soc ; 146(32): 22797-22806, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39087792

RESUMEN

The construction of isotypic high-nuclearity inorganic cages with identical pristine parent structure and increasing nuclearity is highly important for molecular growth and structure-property relationship study, yet it still remains a great challenge. Here, we provide an in situ growth approach for successfully synthesizing a series of new giant hollow polymolybdate dodecahedral cages, Mo250, Mo260-I, and Mo260-E, whose structures are growth based on giant polymolybdate cage Mo240. Remarkably, they show two pathways of nuclear growth based on Mo240, that is, the growth of 10 and 20 Mo centers on the inner and outer surfaces to afford Mo250 and Mo260-I, respectively, and the growth of 10 Mo centers both on the inner and outer surfaces to give Mo260-E. To the best of our knowledge, this is the first study to display the internal and external nuclear growth of a giant hollow polyoxometalate cage. More importantly, regular variations in structure and nuclearity confer these polymolybdate cages with different optical properties, oxidative activities, and hydrogen atom transfer effect, thus allowing them to exhibit moderate to excellent photocatalytic performance in oxidative cross-coupling reactions between different unactivated alkanes and N-heteroarenes. In particular, Mo240 and Mo260-E with better comprehensive abilities can offer the desired coupling product with yield up to 92% within 1 h.

6.
Sci Rep ; 14(1): 19623, 2024 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179608

RESUMEN

The EphA family belongs to a large group of membrane receptor tyrosine kinases. Emerging evidence indicates that the EphA family participates in tumour occurrence and progression. Nonetheless, the expression patterns and prognostic values of the nine EphAs in non-small cell lung cancer (NSCLC) have rarely been studied before. In the current study, we comprehensively analysed the expression and prognostic role of EphA family members by different means. The Cancer Genome Atlas and Gene Expression Profiling Interactive Analysis databases were used to investigate the expression of EphAs in NSCLC. The cBioPortal database was applied to analyse the prognostic values and genetic mutations of EphAs.We discovered that the expression of EphA10 was significantly higher in NSCLC tissues than in adjacent noncancerous tissues, and survival analyses showed that a higher level of EphA10 predicted poor prognosis. Further exploration into the role of EphA10 by ESTIMATE, CIBERSORT, and ssGSEA analysis found that it was also related to immune infiltration and higher expression of targets of ICI targets. In conclusion, this study revealed that among the EphA family members, EphA10 played an oncogenic role and was a promising biomarker for poor prognosis and better immunotherapy response in NSCLC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Pronóstico , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Receptores de la Familia Eph/metabolismo , Receptores de la Familia Eph/genética , Femenino , Masculino , Perfilación de la Expresión Génica
7.
Cell Commun Signal ; 22(1): 313, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844957

RESUMEN

BACKGROUND: Non-small-cell lung cancer (NSCLC) accounts for 80-85% of all lung cancer and is the leading cause of cancer-related deaths globally. Although various treatment strategies have been introduced, the 5-year survival rate of patients with NSCLC is only 20-30%. Thus, it remains necessary to study the pathogenesis of NSCLC and develop new therapeutic drugs. Notably, PYK2 has been implicated in the progression of many tumors, including NSCLC, but its detailed mechanism remains unclear. In this study, we aimed to elucidate the mechanisms through which PYK2 promotes NSCLC progression. METHODS: The mRNA and protein levels of various molecules were measured using qRT-PCR, western blot (WB), and immunohistochemistry (IHC), respectively. We established stable PYK2 knockdown and overexpression cell lines, and CCK-8, EdU, and clonogenic assays; wound healing, transwell migration, and Matrigel invasion assays; and flow cytometry were employed to assess the phenotypes of tumor cells. Protein interactions were evaluated with co-immunoprecipitation (co-IP), immunofluorescence (IF)-based colocalization, and nucleocytoplasmic separation assays. RNA sequencing was performed to explore the transcriptional regulation mediated by PYK2. Secreted VGF levels were examined using ELISA. Dual-luciferase reporter system was used to detect transcriptional regulation site. PF4618433 (PYK2 inhibitor) and Stattic (STAT3 inhibitor) were used for rescue experiments. A public database was mined to analyze the effect of these molecules on NSCLC prognosis. To investigate the role of PYK2 in vivo, mouse xenograft models of lung carcinoma were established and examined. RESULTS: The protein level of PYK2 was higher in human NSCLC tumors than in the adjacent normal tissue, and higher PYK2 expression was associated with poorer prognosis. PYK2 knockdown inhibited the proliferation and motility of tumor cells and caused G1-S arrest and cyclinD1 downregulation in A549 and H460 cells. Meanwhile, PYK2 overexpression had the opposite effect in H1299 cells. The siRNA-induced inhibition of integrins alpha V and beta 1 led to the downregulation of p-PYK2(Tyr402). Activated PYK2 could bind to STAT3 and enhance its phosphorylation at Tyr705, regulating the nuclear accumulation of p-STAT3(Tyr705). This further promoted the expression of VGF, as confirmed by RNA sequencing in a PYK2-overexpressing H1299 cell line and validated by rescue experiments. Two sites in promoter region of VGF gene were confirmed as binding sites of STAT3 by Dual-luciferase assay. Data from the TGCA database showed that VGF was related to the poor prognosis of NSCLC. IHC revealed higher p-PYK2(Tyr402) and VGF expression in lung tumors than in adjacent normal tissues. Moreover, both proteins showed higher levels in advanced TNM stages than earlier ones. A positive linear correlation existed between the IHC score of p-PYK2(Tyr402) and VGF. Knockdown of VGF inhibited tumor progression and reversed the tumor promoting effect of PYK2 overexpression in NSCLC cells. Finally, the mouse model exhibited enhanced tumor growth when PYK2 was overexpressed, while the inhibitors PF4618433 and Stattic could attenuate this effect. CONCLUSIONS: The Integrin αVß1-PYK2-STAT3-VGF axis promotes NSCLC development, and the PYK2 inhibitor PF4618433 and STAT3 inhibitor Stattic can reverse the pro-tumorigenic effect of high PYK2 expression in mouse models. Our findings provide insights into NSCLC progression and could guide potential therapeutic strategies against NSCLC with high PYK2 expression levels.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Progresión de la Enfermedad , Quinasa 2 de Adhesión Focal , Neoplasias Pulmonares , Factor de Transcripción STAT3 , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Quinasa 2 de Adhesión Focal/metabolismo , Quinasa 2 de Adhesión Focal/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Animales , Proliferación Celular/genética , Ratones , Movimiento Celular/genética , Ratones Desnudos , Línea Celular Tumoral , Transducción de Señal/genética , Regulación Neoplásica de la Expresión Génica , Ratones Endogámicos BALB C
8.
Biomed Pharmacother ; 175: 116716, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735084

RESUMEN

Biofilms often engender persistent infections, heightened antibiotic resistance, and the recurrence of infections. Therefor, infections related to bacterial biofilms are often chronic and pose challenges in terms of treatment. The main transcription regulatory factor, CsgD, activates csgABC-encoded curli to participate in the composition of extracellular matrix, which is an important skeleton for biofilm development in enterobacteriaceae. In our previous study, a wide range of natural bioactive compounds that exhibit strong affinity to CsgD were screened and identified via molecular docking. Tannic acid (TA) was subsequently chosen, based on its potent biofilm inhibition effect as observed in crystal violet staining. Therefore, the aim of this study was to investigate the specific effects of TA on the biofilm formation of clinically isolated Escherichia coli (E. coli). Results demonstrated a significant inhibition of E. coli Ec032 biofilm formation by TA, while not substantially affecting the biofilm of the ΔcsgD strain. Moreover, deletion of the csgD gene led to a reduction in Ec032 biofilm formation, alongside diminished bacterial motility and curli synthesis inhibition. Transcriptomic analysis and RT-qPCR revealed that TA repressed genes associated with the csg operon and other biofilm-related genes. In conclusion, our results suggest that CsgD is one of the key targets for TA to inhibit E. coli biofilm formation. This work preliminarily elucidates the molecular mechanisms of TA inhibiting E. coli biofilm formation, which could provide a lead structure for the development of future antibiofilm drugs.


Asunto(s)
Biopelículas , Proteínas de Escherichia coli , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Taninos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Taninos/farmacología , Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Antibacterianos/farmacología , Transactivadores
9.
BMC Vet Res ; 20(1): 212, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38764041

RESUMEN

BACKGROUND: Acinetobacter lwoffii (A.lwoffii) is a serious zoonotic pathogen that has been identified as a cause of infections such as meningitis, bacteremia and pneumonia. In recent years, the infection rate and detection rate of A.lwoffii is increasing, especially in the breeding industry. Due to the presence of biofilms, it is difficult to eradicate and has become a potential super drug-resistant bacteria. Therefore, eradication of preformed biofilm is an alternative therapeutic action to control A.lwoffii infection. The present study aimed to clarify that baicalin could eradicate A.lwoffii biofilm in dairy cows, and to explore the mechanism of baicalin eradicating A.lwoffii. RESULTS: The results showed that compared to the control group, the 4 MIC of baicalin significantly eradicated the preformed biofilm, and the effect was stable at this concentration, the number of viable bacteria in the biofilm was decreased by 0.67 Log10CFU/mL. The total fluorescence intensity of biofilm bacteria decreased significantly, with a reduction rate of 67.0%. There were 833 differentially expressed genes (367 up-regulated and 466 down-regulated), whose functions mainly focused on oxidative phosphorylation, biofilm regulation system and trehalose synthesis. Molecular docking analysis predicted 11 groups of target proteins that were well combined with baicalin, and the content of trehalose decreased significantly after the biofilm of A.lwoffii was treated with baicalin. CONCLUSIONS: The present study evaluated the antibiofilm potential of baicalin against A.lwoffii. Baicalin revealed strong antibiofilm potential against A.lwoffii. Baicalin induced biofilm eradication may be related to oxidative phosphorylation and TCSs. Moreover, the decrease of trehalose content may be related to biofilm eradication.


Asunto(s)
Acinetobacter , Antibacterianos , Biopelículas , Flavonoides , Leche , Biopelículas/efectos de los fármacos , Animales , Flavonoides/farmacología , Acinetobacter/efectos de los fármacos , Bovinos , Leche/microbiología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Femenino , Infecciones por Acinetobacter/veterinaria , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología
10.
Artículo en Inglés | MEDLINE | ID: mdl-38530540

RESUMEN

Staphylococcus aureus is a major cause of hospital-associated infections worldwide. The organism's ability to form biofilms has led to resistance against current treatment options such as beta-lactams, glycopeptides, and daptomycin. The ArlRS two-component system is a crucial regulatory system necessary for S. aureus autolysis, biofilm formation, capsule synthesis, and virulence. This study aims to investigate the role of the arlR deletion mutant in the detection and activation of S. aureus. We created an arlR deleted mutant and complementary strains and characterized their impact on the strains using partial growth measurement. The quantitative real-time PCR was performed to determine the expression of icaA, and the microscopic images of adherent cells were captured at the optical density of 600 to determine the primary bacterial adhesion. The biofilm formation assay was utilized to investigate the number of adherent cells using crystal violet staining. Eventually, the Triton X-100 autolysis assay was used to determine the influence of arlR on the cell autolytic activities. Our findings indicate that the deletion of arlR reduced the transcriptional expression of icaA but not icaR in the ica operon, leading to decrease in polysaccharide intercellular adhesin (PIA) synthesis. Compared to the wild-type and the complementary mutants, the arlR mutant exhibited decreased in biofilm production but increased autolysis. It concluded that the S. aureus response regulatory ArlR influences biofilm formation, agglutination, and autolysis. This work has significantly expanded our knowledge of the ArlRS two-component regulatory system and could aid in the development of novel antimicrobial strategies against S. aureus.

11.
Front Microbiol ; 15: 1293990, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476937

RESUMEN

Introduction: Acinetobacter baumannii PmrAB is a crucial two-component regulatory system (TCS) that plays a vital role in conferring resistance to polymyxin. PmrA, a response regulator belonging to the OmpR/PhoB family, is composed of a C-terminal DNA-binding effector domain and an N-terminal receiver domain. The receiver domain can be phosphorylated by PmrB, a transmembrane sensor histidine kinase that interacts with PmrA. Once phosphorylated, PmrA undergoes a conformational change, resulting in the formation of a symmetric dimer in the receiver domain. This conformational change facilitates the recognition of promoter DNA by the DNA-binding domain of PmrA, leading to the activation of adaptive responses. Methods: X-ray crystallography was carried out to solve the structure of PmrA receiver domain. Electrophoretic mobility shift assay and Isothermal titration calorimetry were recruited to validate the interaction between the recombinant PmrA protein and target DNA. Field-emission scanning electron microscopy (FE-SEM) was employed to characterize the surface morphology of A. baumannii in both the PmrA knockout and mutation strains. Results: The receiver domain of PmrA follows the canonical α5ß5 response regulator assembly, which undergoes dimerization upon phosphorylation and activation. Beryllium trifluoride is utilized as an aspartate phosphorylation mimic in this process. Mutations involved in phosphorylation and dimerization significantly affected the expression of downstream pmrC and naxD genes. This impact resulted in an enhanced cell surface smoothness with fewer modifications, ultimately contributing to a decrease in colistin (polymyxin E) and polymyxin B resistance. Additionally, a conservative direct-repeat DNA PmrA binding sequence TTTAAGNNNNNTTTAAG was identified at the promoter region of the pmrC and naxD gene. These findings provide structural insights into the PmrA receiver domain and reveal the mechanism of polymyxin resistance, suggesting that PmrA could be a potential drug target to reverse polymyxin resistance in Acinetobacter baumannii.

12.
Sci Bull (Beijing) ; 69(10): 1418-1426, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38485624

RESUMEN

The Zr(IV) ions are easily hydrolyzed to form oxides, which severely limits the discovery of new structures and applications of Zr-based compounds. In this work, three ferrocene (Fc)-functionalized Zr-oxo clusters (ZrOCs), Zr9Fc6, Zr10Fc6 and Zr12Fc8 were synthesized through inhibiting the hydrolysis of Zr(IV) ions, which show increased nuclearity and regular structural variation. More importantly, these Fc-functionalized ZrOCs were used as heterogeneous catalysts for the transfer hydrogenation of levulinic acid (LA) and phenol oxidation reactions for the first time, and displayed outstanding catalytic activity. In particular, Zr12Fc8 with the largest number of Zr active sites and Fc groups can achieve > 95% yield for LA-to-γ-valerolactone within 4 h (130 °C) and > 98% yield for 2,3,6-trimethylphenol-to-2,3,5-trimethyl-p-benzoquinone within 30 min (80 °C), showing the best catalytic performance. Catalytic characterization combined with theory calculations reveal that in the Fc-functionalized ZrOCs, the Zr active sites could serve as substrate adsorption sites, while the Fc groups could act as hydrogen transfer reagent or Fenton reagent, and thus achieve effectively intramolecular metal-ligand synergistic catalysis. This work develops functionalized ZrOCs as catalysts for thermal-triggered redox reactions.

13.
Front Immunol ; 15: 1328933, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375474

RESUMEN

Background: Existing studies on the relationship between tea intake and lung diseases have yielded inconsistent results, leading to an ongoing dispute on this issue. The impact of tea consumption on the respiratory system remained elucidating. Materials and methods: We conducted a two-sample Mendelian randomization (MR) study to evaluate the associations between five distinct tea intake phenotypes and 15 different respiratory outcomes using open Genome-wide association study (GWAS) data. The inverse variance weighted (IVW) was used for preliminary screening and a variety of complementary methods were used as sensitivity analysis to validate the robustness of MR estimates. Pathway enrichment analysis was used to explore possible mechanisms. Results: IVW found evidence for a causal effect of standard tea intake on an increased risk of lung squamous cell cancer (LSCC) (OR = 1.004; 95% CI = 1.001-1.007; P = 0.00299). No heterogeneity or pleiotropy was detected. After adjustment for potential mediators, including smoking, educational attainment, and time spent watching television, the association was still robust in multivariable MR. KEGG and GO enrichment predicted proliferation and activation of B lymphocytes may play a role in this causal relation. No causalities were observed when evaluating the effect of other kinds of tea intake on various pulmonary diseases. Conclusion: Our MR estimates provide causal evidence of the independent effect of standard tea intake (black tea intake) on LSCC, which may be mediated by B lymphocytes. The results implied that the population preferring black tea intake should be wary of a higher risk of LSCC.


Asunto(s)
Camellia sinensis , Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Neoplasias Pulmonares/genética ,
14.
Sci Bull (Beijing) ; 69(4): 492-501, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38044194

RESUMEN

The performance applications (e.g., photocatalysis) of zirconium (Zr) and hafnium (Hf) based complexes are greatly hindered by the limited development of their structures and the relatively inert metal reactivity. In this work, we constructed two ultrastable Zr/Hf-based clusters (Zr9-TC4A and Hf9-TC4A) using hydrophobic 4-tert-butylthiacalix[4]arene (H4TC4A) ligands, in which unsaturated coordinated sulfur (S) atoms on the TC4A4- ligand can generate strong metal-ligand synergy with nearby active metal Zr/Hf sites. As a result, these two functionalized H4TC4A ligands modified Zr/Hf-oxo clusters, as catalysts for the amine oxidation reaction, exhibited excellent catalytic activity, achieving very high substrate conversion (>99%) and product selectivity (>90%). Combining comparative experiments and theoretical calculations, we found that these Zr/Hf-based cluster catalysts accomplish efficient amine oxidation reactions through synergistic effect between metals and ligands: (i) The photocatalytic benzylamine (BA) oxidation reaction was achieved by the synergistic effect of the dual active sites, in which, the naked S sites on the TC4A4- ligand oxidize the BA by photogenerated hole and oxygen molecules are reduced by photogenerated electrons on the metal active sites; (ii) in the aniline oxidation reaction, aniline was adsorbed by the bare S sites on ligands to be closer to metal active sites and then oxidized by the oxygen-containing radicals activated by the metal sites, thus completing the catalytic reaction under the synergistic catalytic effect of the proximity metal-ligand. In this work, the Zr/Hf-based complexes applied in the oxidation of organic amines have been realized using active S atom-directed metal-ligand synergistic catalysis and have demonstrated very high reactivity.

16.
Medicine (Baltimore) ; 102(46): e36019, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37986309

RESUMEN

Based on the importance of chronic inflammation in the pathogenesis of periodontitis and diabetes, the bidirectional relationship between these 2 diseases has been widely confirmed. However, the molecular mechanisms of bidirectional relationship still need to be studied further. In this study, gene expression profile data for diabetes and periodontitis were obtained from Gene Expression Omnibus (GEO) database. Integrative analytical platform were constructed, including common differentially expressed genes (cDEGs), Gene Ontology-Kyoto Encyclopedia of Genes and Genomes (GO-KEGG), and protein-protein interaction. Hub genes and essential modules were detected via Cytoscape. Key hub genes and signaling pathway that mediate chronic inflammation were validated by qPCR and Western blot. Eleven cDEGs were identified. Function analysis showed that cDEGs plays an important role in inflammatory response, cytokine receptor binding, TNF signaling pathway. As hub genes, CXCR4, IL1B, IL6, CXCL2, and MMP9 were detected based on the protein-protein interactions network. IL1B, CXCR4 mRNA were up-regulated in gingivitis samples compared with normal tissues (P < .05). Western blot indicated that the levels of TNF were enhanced in gingivitis of type 2 diabetes compared with normal tissues (P < .01). Hub gene and TNF signaling pathway are helpful to elucidate the molecular mechanism of the bidirectional relationship between periodontitis and diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Gingivitis , Periodontitis , Humanos , Perfilación de la Expresión Génica , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Biomarcadores , Periodontitis/genética , Inflamación , Biología Computacional
17.
ACS Sens ; 8(11): 4253-4263, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-37862691

RESUMEN

Chemiresistive ammonia gas (NH3) sensors have been playing a significant role in the fields of environmental protection, food safety monitoring, and air quality evaluation. Nevertheless, balancing the high sensitivity and humidity tolerance remains challenging. Herein, the two-dimensional (2D) heterostructures of molybdenum trioxide (MoO3) nanoflakes decorated with dysprosium oxide (Dy2O3) nanosheets (termed Dy2O3/MoO3) were synthesized via a facile probe-sonication method. With respect to pristine MoO3 counterparts, the optimal Dy2O3/MoO3 sensors possessed a 4.49-fold larger response at a lower temperature (30.52@328.2 °C vs 6.8@369.7 °C toward 10 ppm of NH3), shorter response/recovery times (11.6/2.9 s vs 26.9/43.4 s), 52.6-fold higher sensitivity (17.35/ppm vs 0.33/ppm), and a lower theoretical detection limit (1.02 vs 32.82 ppb). Besides the nice reversibility, wide detection range (0.45-100 ppm) and robust long-term stability, inspiringly, the Dy2O3/MoO3 sensors showed a nearly humidity-independent response. These impressive improvements in the NH3-sensing performance were attributed to numerous heterojunctions to strengthen the carrier concentration modulation and the compensation/protection effect of Dy2O3 to mitigate the humidity effect. Moreover, the Dy2O3/MoO3 sensors showed preliminary application potential in monitoring pork freshness. This work provides a universal methodology for constructing NH3 gas sensors with high sensitivity and good humidity resistance and probably extends the application scenarios of MoO3-based sensors in the Internet of Things in the future.


Asunto(s)
Amoníaco , Alimentos , Humedad , Inocuidad de los Alimentos , Internet
18.
Angew Chem Int Ed Engl ; 62(36): e202308505, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37435787

RESUMEN

Photocatalytic synthesis of hydrogen peroxide (H2 O2 ) is a potential clean method, but the long distance between the oxidation and reduction sites in photocatalysts hinders the rapid transfer of photogenerated charges, limiting the improvement of its performance. Here, a metal-organic cage photocatalyst, Co14 (L-CH3 )24 , is constructed by directly coordinating metal sites (Co sites) used for the O2 reduction reaction (ORR) with non-metallic sites (imidazole sites of ligands) used for the H2 O oxidation reaction (WOR), which shortens the transport path of photogenerated electrons and holes, and improves the transport efficiency of charges and activity of the photocatalyst. Therefore, it can be used as an efficient photocatalyst with a rate of as high as 146.6 µmol g-1 h-1 for H2 O2 production under O2 -saturated pure water without sacrificial agents. Significantly, the combination of photocatalytic experiments and theoretical calculations proves that the functionalized modification of ligands is more conducive to adsorbing key intermediates (*OH for WOR and *HOOH for ORR), resulting in better performance. This work proposed a new catalytic strategy for the first time; i.e., to build a synergistic metal-nonmetal active site in the crystalline catalyst and use the host-guest chemistry inherent in the metal-organic cage (MOC)to increase the contact between the substrate and the catalytically active site, and finally achieve efficient photocatalytic H2 O2 synthesis.

19.
J Am Chem Soc ; 145(29): 16098-16108, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37428127

RESUMEN

While the difference in catalytic reactivity between mono- and multimetallic sites is often attributed to more than just the number of active sites, still few catalyst model systems have been developed to explore more underlying causal factors. In this work, we have elaborately designed and constructed three stable calix[4]arene (C4A)-functionalized titanium-oxo compounds, Ti-C4A, Ti4-C4A, and Ti16-C4A, with well-defined crystal structures, increasing nuclearity, and tunable light absorption capacity and energy levels. Among them, Ti-C4A and Ti16-C4A can be taken as model catalysts to compare the differences in reactivity between mono- and multimetallic sites. Taking CO2 photoreduction as the basic catalytic reaction, both compounds can achieve CO2-to-HCOO- conversion with high selectivity (close to 100%). Moreover, the catalytic activity of multimetallic Ti16-C4A is up to 2265.5 µmol g-1 h-1, which is at least 12 times higher than that of monometallic Ti-C4A (180.0 µmol g-1 h-1), and is the best-performing crystalline cluster-based photocatalyst known to date. Catalytic characterization combined with density functional theory calculations shows that in addition to the advantage of having more metal active sites (for adsorption and activation of more CO2 molecules), Ti16-C4A can effectively reduce the activation energy required for the CO2 reduction reaction by completing the multiple electron-proton transfer process rapidly with synergistic metal-ligand catalysis, thus exhibiting superior catalytic performance to that of monometallic Ti-C4A. This work provides a crystalline catalyst model system to explore the potential factors underlying the difference in catalytic reactivity between mono- and multimetallic sites.

20.
Am J Cancer Res ; 13(6): 2681-2701, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424813

RESUMEN

Checkpoint inhibitor pneumonitis (CIP) is a common type of immune-related adverse events (irAEs) with poor clinical prognosis. Currently, there is a lack of effective biomarkers and predictive models to predict the occurrence of CIP. This study retrospectively enrolled 547 patients who received immunotherapy. The patients were divided into CIP cohorts of any grade, or grade ≥2 or ≥3. Multivariate logistic regression analysis was used to determine the independent risk factors, based on which we established Nomogram A and B for respectively predicting any grade or grade ≥2 CIP. For Nomogram A to predict any grade CIP, the C indexes in the training and validation cohorts were 0.827 (95% CI=0.772-0.881) and 0.860 (95% CI=0.741-0.918), respectively. Similarly, for Nomogram B to predict grade 2 or higher CIP, the C indexes of the training and validation cohorts were 0.873 (95% CI=0.826-0.921) and 0.904 (95% CI=0.804-0.973), respectively. In conclusion, the predictive power of nomograms A and B has proven satisfactory following internal and external verification. They are promising clinical tools that are convenient, visual, and personalized for assessing the risks of developing CIP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...