Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros













Base de datos
Asunto principal
Intervalo de año de publicación
1.
Opt Express ; 31(2): 1629-1640, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785194

RESUMEN

Photon blockade provides an effective way to realize the single-photon source, which attracts intensive attention in the fields of quantum optics and quantum information. Here in this study, we investigate photon blockade in a non-Hermitian indirectly coupled resonator system, which consists of a dissipative cavity and a Kerr nonlinear resonator coupled to two nano-scatters. We find that by tuning the coupling phase θ between the two resonators, the quantum interference could be induced on one side near the exceptional points (EPs), resulting in the unconventional photon blockade effect. Furthermore, it is noticed that the large Kerr nonlinearity is not always beneficial for unconventional photon blockades. There is an optimal threshold for the intensity of the Kerr nonlinearity and the phase angle θ for the appearance of the unconventional photon blockade effect. We believe the current study has substantial consequences for investigating the physical characteristics close to EPs and presents a novel method for developing integrated on-chip single-photon sources.

2.
Sensors (Basel) ; 22(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35684811

RESUMEN

The technologies of ultrasound detection have a wide range of applications in marine science and industrial manufacturing. With the variation of the environment, the requirements of anti-interference, miniaturization, and ultra-sensitivity are put forward. Optical microcavities are often carefully designed for a variety of ultra-sensitive detections. Using the packaged microsphere cavity, we fabricated an ultrasound sensor that can work in an underwater environment. During practical detection, the optical resonance mode of the cavity can work with real-time response accordingly. The designed structure can work in various complex environments and has advantages in the fields of precision measurement and nano-particle detection.


Asunto(s)
Microesferas , Miniaturización
3.
Appl Opt ; 61(33): 9898-9903, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36606821

RESUMEN

A hybrid dielectric reconfigurable graphene antenna is designed by combining the Yagi antenna and absorption characteristics of graphene. Graphene is selectively covered in the Yagi antenna directors to obtain a change of the beam from unidirectional to bidirectional by changing the graphene potential. By reducing the area covered by graphene, we obtain a radiation efficiency of more than 95 percent. After adding a gold bowtie antenna at 1550 nm, the antenna shows a larger directivity and a smaller beam width, as well as a maximum directivity of 7.2 dBi. Furthermore, the surface area of graphene has been reduced three times, while the directivity improves from 4.7 to 5.6 dBi after comparing the effect of different surface distributions, which will be helpful to reduce the difficulty of graphene antenna manufacturing and improve the performance of the antenna beam.

4.
Nanoscale ; 13(37): 15812-15818, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34528651

RESUMEN

Plexcitonic hybrids, consisting of metal nanoparticles and J-aggregates, are effective nanostructures to achieve a strong coupling regime. The chirality of the exciton in the strong coupled plexcitons provides more potential for the design of advanced optoelectronic devices. Here, we experimentally measured the circular dichroism (CD) spectra of plexcitonic hybrids, and researched the diverse chirality of J-aggregates assembled on the surface of the achiral Au nanorods. We found that the chirality of J-aggregates is not only related to the quantity of dye molecules in the plexcitonic, but also to the distribution in different positions of the nanorods, by analyzing the composition of the CD spectra with a quasistatic theory. The J-aggregates assembled on both ends and both sides of the nanorods had opposite chirality. The interaction between the longitudinal localized surface plasmon resonance (LLSPR) of the nanorods and J-aggregates achieved the strong coupling regime, and Rabi splitting of about 198.3 meV was observed. The research into the chirality of the plexcitons provided more detail on the chiral J-aggregates assembly on the nanoparticles, and give a perspective on the development of the strong coupling interactions and the design of optoelectronic systems.

5.
Entropy (Basel) ; 23(8)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34441150

RESUMEN

Measurement-device-independent quantum key distribution (MDI-QKD) protocol has high practical value. Satellite-based links are useful to build long-distance quantum communication network. The model of satellite-based links for MDI-QKD was proposed but it lacks practicality. This work further analyzes the performance of it. First, MDI-QKD and satellite-based links model are introduced. Then considering the operation of the satellite the performance of their combination is studied under different weather conditions. The results may provide important references for combination of optical-fiber-based links on the ground and satellite-based links in space, which is helpful for large-scale quantum communication network.

6.
ACS Nano ; 15(2): 2292-2300, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33356158

RESUMEN

Understanding the unique characteristics of plexcitons, hybridized states resulting from the strong coupling between plasmons and excitons, is vital for both fundamental studies and practical applications in nano-optics. However, the research of plexcitons from the perspective of chiral optics has been rarely reported. Here, we experimentally investigate the optical chirality of plexcitonic systems consisting of composite metal nanoparticles and chiral J-aggregates in the strong coupling regime. Mode splitting and anticrossing behavior are observed in both the circular dichroism (CD) and extinction spectra of the hybrid nanosystems. A large mode splitting (at zero detuning) of up to 136 meV/214 meV in CD/extinction measurements confirms that the systems attain the strong coupling regime. This phenomenon indicates that the formation of plexcitons modifies not only the extinction but also the optical chirality of the hybrid systems. We develop a quasistatic theory to elucidate the chiral optical responses of hybrid systems. Furthermore, we propose and justify a criterion of strong plasmon-exciton interaction: the mode splitting in the CD spectra (at zero detuning) is larger than half of that in the extinction spectra. Our findings give a chiral perspective on the study of strong plasmon-exciton coupling and have potential applications in the chiral optical field.

7.
Nanotechnology ; 31(34): 345202, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32380488

RESUMEN

We theoretically investigate the coupling between a single Ag nanoparticle and chiral molecular J-aggregates (TDBC). The element of the structure is composed of a Ag nanoparticle entirely surrounded by chiral TDBC. The results show that the coupling between the Ag nanoparticle and TDBC can be tuned by the size of the Ag nanoparticle. By changing the size of the Ag nanoparticle, both the strong coupling effect and the weak coupling effect between the Ag nanoparticle and TDBC are achieved. Circular dichroism (CD) spectra of the hybridized structures in both the strong and the weak coupling regimes present a Fano line-shape, which can be represented in the form of [Formula: see text]. We also find that the CD spectrum in the strong coupling regime is less than that in the weak coupling regime. The maximum of the CD spectrum of the hybridized structure in the scattering spectrum is amplified 130 times compared to that of chiral TDBC in the strong coupling regime, and 490 times compared to that in the weak coupling regime, respectively. Much more energy is used to change the resonant wavelength of the hybridized structure in the strong coupling regime. The radiative efficiency of the system is suppressed. In the weak coupling regime, the energy is mainly used to enhance the CD spectrum. Our research has great potential for molecule detection.

8.
Nanoscale Res Lett ; 14(1): 74, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30825023

RESUMEN

We theoretically investigate the strong coupling phenomenon between a quasi-single molecule and a plasmonic cavity based on the blue-detuned trapping system. The trapping system is made up of a metallic nanohole array. A finite-difference time-domain method is employed to simulate the system, and the molecule is treated as a dipole in simulations. By calculating the electromagnetic field distributions, we obtain the best position for trapping a molecule, and we get the strong coupling phenomenon that there are two splitting peaks in the transmission spectrum when the molecule is trapped in the structure, while only one peak is observed in the one without the molecule. We also find that only when the molecule polarization parallels to the incident light wave vector can we observe a strong coupling phenomenon.

9.
Opt Express ; 25(4): 3525-3533, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28241566

RESUMEN

In this paper, three Fano resonances based on three different physical mechanisms are theoretically and numerically investigated in a plasmonic resonator system, comprised of two circular cavities. And the multimode interference coupled mode theory (MICMT) including coupling phases is proposed to explain the Fano resonances in plasmonic resonator system. According to MICMT, one of the Fano resonances originates from the interference between different resonant modes of one resonator, the other is induced by the interference between the resonant modes of different resonators. Mode degeneracy is removed when the symmetry of the system is broken, thereby emerging the third kind of Fano resonance which is called degenerate interference Fano resonance, and the degenerate interference coupled mode theory (DICMT) is proposed to explain this kind of Fano resonance. The sensitivity and FOM* (figure of merit) of these Fano resonances can be as high as 840 nm/RIU and 100, respectively. These are useful for fundamental study and applications in sensors, splitters and slow-light devices.

10.
Opt Express ; 22(2): 1551-9, 2014 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-24515161

RESUMEN

Exploiting the input-output process of low-Q cavities confining nitrogen-vacancy centers, we present an efficient entanglement concentration protocol on electron spin state in decoherence free subspace. Less entangled state can be concentrated to maximally entangled state with the assistance of single photon detection. With its robustness and scalability, the present protocol is immune to dephasing and can be further applied to quantum repeaters and distributed quantum computation.

11.
Opt Express ; 21(16): 19252-60, 2013 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-23938842

RESUMEN

Here we investigate a physical implementation of the universal quantum controlled phase (CPHASE) gate operation on photonic qubits by using nitrogen vacancy (N-V) centers and microcavity resonators. The quantum CPHASE gate can be achieved by sending the photons through the microcavity and interacting with the N-V center. The proposed scheme can be further used for scalable quantum computation. We show that this technique provides us a deterministic source of cluster state generation on photonic qubits. In this scheme, only single photons and single N-V center are required and the proposed schemes are feasible with the current experimental technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA