RESUMEN
Coupling faults that simultaneously occur during the operation of mechanical equipment are widespread. These faults encompass a diverse range of high-order coupling relationships, involving multiple base fault types. Based on the advantages of hypergraphs for higher-order relationship descriptions, two coupling fault diagnosis architectures based on the hypergraph neural network are proposed in this paper: 1. In the coupling fault diagnosis framework based on feature generation, the base faults serve as the hypergraph nodes, and each hyperedge connects the base faults. The generator, which consists of the hypergraph neural network, generates coupling faults as negative samples to enforce regularization constraints for the discriminator training. 2. In the coupling fault diagnosis framework based on feature extraction, each node represents a fault mode, and each hyperedge connects nodes with common failure modes. The multi-head attention mechanism extracts the features of base faults, and the common fault features in a hyperedge are aggregated via the hypergraph neural network. The inner product correlation is used to diagnose the fault modes. The results show that the diagnostic accuracy for coupling faults with the two frameworks reaches 88.6% and 86.76%, respectively. Both frameworks can be used for the diagnosis and analysis of high-order coupling faults.
RESUMEN
Mechanical equipment is composed of several parts, and the interaction between parts exists throughout the whole life cycle, leading to the widespread phenomenon of fault coupling. The diagnosis of independent faults cannot meet the requirements of the health management of mechanical equipment under actual working conditions. In this paper, the dynamic vertex interpretable graph neural network (DIGNN) is proposed to solve the problem of coupling fault diagnosis, in which dynamic vertices are defined in the data topology. First, in the date preprocessing phase, wavelet transform is utilized to make input features interpretable and reduce the uncertainty of model training. In the fault topology, edge connections are made between nodes according to the fault coupling information, and edge connections are established between dynamic nodes and all other nodes. Second the data topology with dynamic vertices is used in the training phase and in the testing phase, the time series data are only fed into dynamic vertices for classification and analysis, which makes it possible to realize coupling fault diagnosis in an industrial production environment. The features extracted in different layers of DIGNN interpret how the model works. The method proposed in this paper can realize the accurate diagnosis of independent faults in the dataset with an accuracy of 100%, and can effectively judge the coupling mode of coupling faults with a comprehensive accuracy of 88.3%.
RESUMEN
To tackle the problems of over-reliance on traditional experience, poor troubleshooting robustness, and slow response by maintenance personnel to changes in faults in the current aircraft health management field, this paper proposes the use of a knowledge graph. The knowledge graph represents troubleshooting in a new way. The aim of the knowledge graph is to improve the correlation between fault data by representing experience. The data source for this study consists of the flight control system manual and typical fault cases of a specific aircraft type. A knowledge graph construction approach is proposed to construct a fault knowledge graph for aircraft health management. Firstly, the data are classified using the ERNIE model-based method. Then, a joint entity relationship extraction model based on ERNIE-BiLSTM-CRF-TreeBiLSTM is introduced to improve entity relationship extraction accuracy and reduce the semantic complexity of the text from a linguistic perspective. Additionally, a knowledge graph platform for aircraft health management is developed. The platform includes modules for text classification, knowledge extraction, knowledge auditing, a Q&A system, and graph visualization. These modules improve the management of aircraft health data and provide a foundation for rapid knowledge graph construction and knowledge graph-based fault diagnosis.