Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 56(3): 442-457, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38361033

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is a complex disease with remarkable immune and metabolic heterogeneity. Here we perform genomic, transcriptomic, proteomic, metabolomic and spatial transcriptomic and metabolomic analyses on 100 patients with ccRCC from the Tongji Hospital RCC (TJ-RCC) cohort. Our analysis identifies four ccRCC subtypes including De-clear cell differentiated (DCCD)-ccRCC, a subtype with distinctive metabolic features. DCCD cancer cells are characterized by fewer lipid droplets, reduced metabolic activity, enhanced nutrient uptake capability and a high proliferation rate, leading to poor prognosis. Using single-cell and spatial trajectory analysis, we demonstrate that DCCD is a common mode of ccRCC progression. Even among stage I patients, DCCD is associated with worse outcomes and higher recurrence rate, suggesting that it cannot be cured by nephrectomy alone. Our study also suggests a treatment strategy based on subtype-specific immune cell infiltration that could guide the clinical management of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/patología , Multiómica , Proteómica , Reprogramación Metabólica , Diciclohexilcarbodiimida , Progresión de la Enfermedad , Pronóstico
2.
Oncogenesis ; 13(1): 4, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191593

RESUMEN

The essential G1-cyclin, CCND1, is frequently overexpressed in cancer, contributing to tumorigenesis by driving cell-cycle progression. D-type cyclins are rate-limiting regulators of G1-S progression in mammalian cells via their ability to bind and activate CDK4 and CDK6. In addition, cyclin D1 conveys kinase-independent transcriptional functions of cyclin D1. Here we report that cyclin D1 associates with H2BS14 via an intrinsically disordered domain (IDD). The same region of cyclin D1 was necessary for the induction of aneuploidy, induction of the DNA damage response, cyclin D1-mediated recruitment into chromatin, and CIN gene transcription. In response to DNA damage H2BS14 phosphorylation occurs, resulting in co-localization with γH2AX in DNA damage foci. Cyclin D1 ChIP seq and γH2AX ChIP seq revealed ~14% overlap. As the cyclin D1 IDD functioned independently of the CDK activity to drive CIN, the IDD domain may provide a rationale new target to complement CDK-extinction strategies.

3.
Cells ; 12(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37759462

RESUMEN

The G-protein-coupled receptor C-C chemokine receptor 5 (CCR5) functions as a co-receptor for the entry of HIV into immune cells. CCR5 binds promiscuously to a diverse array of ligands initiating cell signaling that includes guided migration. Although well known to be expressed on immune cells, recent studies have shown the induction of CCR5 on the surface of breast cancer epithelial cells. The function of CCR5 on breast cancer epithelial cells includes the induction of aberrant cell survival signaling and tropism towards chemo attractants. As CCR5 is not expressed on normal epithelium, the receptor provides a potential useful target for therapy. Inhibitors of CCR5 (CCR5i), either small molecules (maraviroc, vicriviroc) or humanized monoclonal antibodies (leronlimab) have shown anti-tumor and anti-metastatic properties in preclinical studies. In early clinical studies, reviewed herein, CCR5i have shown promising results and evidence for effects on both the tumor and the anti-tumor immune response. Current clinical studies have therefore included combination therapy approaches with checkpoint inhibitors.

5.
Oncogene ; 42(22): 1857-1873, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37095257

RESUMEN

Prostate cancer (PCa), the second leading cause of death in American men, includes distinct genetic subtypes with distinct therapeutic vulnerabilities. The DACH1 gene encodes a winged helix/Forkhead DNA-binding protein that competes for binding to FOXM1 sites. Herein, DACH1 gene deletion within the 13q21.31-q21.33 region occurs in up to 18% of human PCa and was associated with increased AR activity and poor prognosis. In prostate OncoMice, prostate-specific deletion of the Dach1 gene enhanced prostatic intraepithelial neoplasia (PIN), and was associated with increased TGFß activity and DNA damage. Reduced Dach1 increased DNA damage in response to genotoxic stresses. DACH1 was recruited to sites of DNA damage, augmenting recruitment of Ku70/Ku80. Reduced Dach1 expression was associated with increased homology directed repair and resistance to PARP inhibitors and TGFß kinase inhibitors. Reduced Dach1 expression may define a subclass of PCa that warrants specific therapies.


Asunto(s)
Neoplasia Intraepitelial Prostática , Neoplasias de la Próstata , Masculino , Humanos , Neoplasia Intraepitelial Prostática/genética , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Próstata/metabolismo , Daño del ADN/genética , Factor de Crecimiento Transformador beta/genética , Proteínas del Ojo/metabolismo , Factores de Transcripción/genética
6.
Res Sq ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36712010

RESUMEN

Prostate cancer (PCa), the second leading cause of death in American men, includes distinct genetic subtypes with distinct therapeutic vulnerabilities. The DACH1 gene encodes a winged helix/Forkhead DNA-binding protein that competes for binding to FOXM1 sites. Herein, DACH1 gene deletion within the 13q21.31-q21.33 region occurs in up to 18% of human PCa and was associated with increased AR activity and poor prognosis. In prostate OncoMice, prostate-specific deletion of the Dach1 gene enhanced prostatic intraepithelial neoplasia (PIN), and was associated with increased TGFb activity and DNA damage. Reduced Dach1 increased DNA damage in response to genotoxic stresses. DACH1 was recruited to sites of DNA damage, augmenting recruitment of Ku70/Ku80. Reduced Dach1 expression was associated with increased homology directed repair and resistance to PARP inhibitors and TGFb kinase inhibitors. Reduced Dach1 expression may define a subclass of PCa that warrants specific therapies.

7.
FEBS J ; 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36471658

RESUMEN

Lysine acetylation is a common reversible post-translational modification of proteins that plays a key role in regulating gene expression. Nuclear receptors (NRs) include ligand-inducible transcription factors and orphan receptors for which the ligand is undetermined, which together regulate the expression of genes involved in development, metabolism, homeostasis, reproduction and human diseases including cancer. Since the original finding that the ERα, AR and HNF4 are acetylated, we now understand that the vast majority of NRs are acetylated and that this modification has profound effects on NR function. Acetylation sites are often conserved and involve both ordered and disordered regions of NRs. The acetylated residues function as part of an intramolecular signalling platform intersecting phosphorylation, methylation and other modifications. Acetylation of NR has been shown to impact recruitment into chromatin, co-repressor and coactivator complex formation, sensitivity and specificity of regulation by ligand and ligand antagonists, DNA binding, subcellular distribution and transcriptional activity. A growing body of evidence in mice indicates a vital role for NR acetylation in metabolism. Additionally, mutations of the NR acetylation site occur in human disease. This review focuses on the role of NR acetylation in coordinating signalling in normal physiology and disease.

8.
Cancers (Basel) ; 14(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36358806

RESUMEN

Cyclin-dependent kinases (CDKs) govern cell-cycle checkpoint transitions necessary for cancer cell proliferation. Recent developments have illustrated nuanced important differences between mono CDK inhibitor (CDKI) treatment and the combination therapies of breast cancers. The CDKIs that are currently FDA-approved for breast cancer therapy are oral agents that selectively inhibit CDK4 and CDK6, include palbociclib (Ibrance), ribociclib (Kisqali), and abemaciclib (Verzenio). CDKI therapy is effective in hormone receptor positive (HR+), and human epidermal growth factor receptor two negative (HER2-) advanced breast cancers (ABC) malignancies, but remains susceptible due to estrogen and progesterone receptor overexpression. Adding a CDK4/6I to endocrine therapy increases efficacy and delays disease progression. Given the side effects of CDKI, identifying potential new treatments to enhance CDKI effectiveness is essential. Recent long-term studies with Palbociclib, including the PALLAS and PENELOPE B, which failed to meet their primary endpoints of influencing progression-free survival, suggest a deeper mechanistic understanding of cyclin/CDK functions is required. The impact of CDKI on the anti-tumor immune response represents an area of great promise. CDKI therapy resistance that arises provides the opportunity for specific types of new therapies currently in clinical trials.

9.
Methods Mol Biol ; 2429: 533-545, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35507187

RESUMEN

Cancer cells sharing stem cell properties are called "cancer stem cells" (CSCs). CSCs have distinct metabolic properties, are intrinsically drug resistant evading chemotherapies, are regulated by miRNA networks and participate in tumor relapse and metastases. During metastatic dissemination, circulating tumor cells (CTCs) invade distant organs and settle in supportive niches. In this process, the stem cell-like properties within CTCs contribute to CTC survival and eventually seed the growth of a secondary tumor. We herein describe methodologies for the analysis of CTCs as they reside in distinct functional pools with distinct characteristics.


Asunto(s)
Células Neoplásicas Circulantes , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Recuento de Células , Humanos , Metástasis de la Neoplasia/patología , Recurrencia Local de Neoplasia/patología , Células Neoplásicas Circulantes/patología , Células Madre Neoplásicas/metabolismo
10.
Front Oncol ; 11: 700629, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34631530

RESUMEN

Reprogramming of metabolic priorities promotes tumor progression. Our understanding of the Warburg effect, based on studies of cultured cancer cells, has evolved to a more complex understanding of tumor metabolism within an ecosystem that provides and catabolizes diverse nutrients provided by the local tumor microenvironment. Recent studies have illustrated that heterogeneous metabolic changes occur at the level of tumor type, tumor subtype, within the tumor itself, and within the tumor microenvironment. Thus, altered metabolism occurs in cancer cells and in the tumor microenvironment (fibroblasts, immune cells and fat cells). Herein we describe how these growth advantages are obtained through either "convergent" genetic changes, in which common metabolic properties are induced as a final common pathway induced by diverse oncogene factors, or "divergent" genetic changes, in which distinct factors lead to subtype-selective phenotypes and thereby tumor heterogeneity. Metabolic heterogeneity allows subtyping of cancers and further metabolic heterogeneity occurs within the same tumor mass thought of as "microenvironmental metabolic nesting". Furthermore, recent findings show that mutations of metabolic genes arise in the majority of tumors providing an opportunity for the development of more robust metabolic models of an individual patient's tumor. The focus of this review is on the mechanisms governing this metabolic heterogeneity in breast cancer.

11.
Cancers (Basel) ; 13(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946495

RESUMEN

HER2, which is associated with clinically aggressive disease, is overexpressed in 15-20% of breast cancers (BC). The host immune system participates in the therapeutic response of HER2+ breast cancer. Identifying genetic programs that participate in ErbB2-induced tumors may provide the rational basis for co-extinction therapeutic approaches. Peroxisome proliferator-activated receptor γ (PPARγ), which is expressed in a variety of malignancies, governs biological functions through transcriptional programs. Herein, genetic deletion of endogenous Pparγ1 restrained mammary tumor progression, lipogenesis, and induced local mammary tumor macrophage infiltration, without affecting other tissue hematopoietic stem cell pools. Endogenous Pparγ1 induced expression of both an EphA2-Amphiregulin and an inflammatory INFγ and Cxcl5 signaling module, that was recapitulated in human breast cancer. Pparγ1 bound directly to growth promoting and proinflammatory target genes in the context of chromatin. We conclude Pparγ1 promotes ErbB2-induced tumor growth and inflammation and represents a relevant target for therapeutic coextinction. Herein, endogenous Pparγ1 promoted ErbB2-mediated mammary tumor onset and progression. PPARγ1 increased expression of an EGF-EphA2 receptor tyrosine kinase module and a cytokine/chemokine 1 transcriptional module. The induction of a pro-tumorigenic inflammatory state by Pparγ1 may provide the rationale for complementary coextinction programs in ErbB2 tumors.

12.
Int J Mol Sci ; 22(9)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923334

RESUMEN

The mechanisms governing therapeutic resistance of the most aggressive and lethal primary brain tumor in adults, glioblastoma, have increasingly focused on tumor stem cells. These cells, protected by the periarteriolar hypoxic GSC niche, contribute to the poor efficacy of standard of care treatment of glioblastoma. Integrated proteogenomic and metabolomic analyses of glioblastoma tissues and single cells have revealed insights into the complex heterogeneity of glioblastoma and stromal cells, comprising its tumor microenvironment (TME). An additional factor, which isdriving poor therapy response is the distinct genetic drivers in each patient's tumor, providing the rationale for a more individualized or personalized approach to treatment. We recently reported that the G protein-coupled receptor CCR5, which contributes to stem cell expansion in other cancers, is overexpressed in glioblastoma cells. Overexpression of the CCR5 ligand CCL5 (RANTES) in glioblastoma completes a potential autocrine activation loop to promote tumor proliferation and invasion. CCL5 was not expressed in glioblastoma stem cells, suggesting a need for paracrine activation of CCR5 signaling by the stromal cells. TME-associated immune cells, such as resident microglia, infiltrating macrophages, T cells, and mesenchymal stem cells, possibly release CCR5 ligands, providing heterologous signaling between stromal and glioblastoma stem cells. Herein, we review current therapies for glioblastoma, the role of CCR5 in other cancers, and the potential role for CCR5 inhibitors in the treatment of glioblastoma.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Receptores CCR5/química , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Humanos , Terapia Molecular Dirigida , Receptores CCR5/genética , Receptores CCR5/metabolismo , Transducción de Señal
13.
Breast Cancer Res ; 23(1): 11, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33485378

RESUMEN

BACKGROUND: Triple-negative breast cancer (BCa) (TNBC) is a deadly form of human BCa with limited treatment options and poor prognosis. In our prior analysis of over 2200 breast cancer samples, the G protein-coupled receptor CCR5 was expressed in > 95% of TNBC samples. A humanized monoclonal antibody to CCR5 (leronlimab), used in the treatment of HIV-infected patients, has shown minimal side effects in large patient populations. METHODS: A humanized monoclonal antibody to CCR5, leronlimab, was used for the first time in tissue culture and in mice to determine binding characteristics to human breast cancer cells, intracellular signaling, and impact on (i) metastasis prevention and (ii) impact on established metastasis. RESULTS: Herein, leronlimab was shown to bind CCR5 in multiple breast cancer cell lines. Binding of leronlimab to CCR5 reduced ligand-induced Ca+ 2 signaling, invasion of TNBC into Matrigel, and transwell migration. Leronlimab enhanced the BCa cell killing of the BCa chemotherapy reagent, doxorubicin. In xenografts conducted with Nu/Nu mice, leronlimab reduced lung metastasis of the TNBC cell line, MB-MDA-231, by > 98% at 6 weeks. Treatment with leronlimab reduced the metastatic tumor burden of established TNBC lung metastasis. CONCLUSIONS: The safety profile of leronlimab, together with strong preclinical evidence to both prevent and reduce established breast cancer metastasis herein, suggests studies of clinical efficacy may be warranted.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/farmacología , Antagonistas de los Receptores CCR5/farmacología , Muerte Celular/genética , Daño del ADN/efectos de los fármacos , Anticuerpos Anti-VIH/farmacología , Animales , Neoplasias de la Mama , Señalización del Calcio/efectos de los fármacos , Línea Celular Tumoral , Células Cultivadas , Quimiocina CCL3/metabolismo , Quimiocina CCL4/metabolismo , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Femenino , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Cell Rep ; 32(11): 108151, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32937140

RESUMEN

Cyclin D1 encodes the regulatory subunit of a holoenzyme that phosphorylates RB and functions as a collaborative nuclear oncogene. The serine threonine kinase Akt plays a pivotal role in the control of cellular metabolism, survival, and mitogenic signaling. Herein, Akt1-mediated phosphorylation of downstream substrates in the mammary gland is reduced by cyclin D1 genetic deletion and is induced by mammary-gland-targeted cyclin D1 overexpression. Cyclin D1 is associated with Akt1 and augments the rate of onset and maximal cellular Akt1 activity induced by mitogens. Cyclin D1 is identified in a cytoplasmic-membrane-associated pool, and cytoplasmic-membrane-localized cyclin D1-but not nuclear-localized cyclin D1-recapitulates Akt1 transcriptional function. These studies identify a novel extranuclear function of cyclin D1 to enhance proliferative functions via augmenting Akt1 phosphorylation at Ser473.


Asunto(s)
Ciclina D1/metabolismo , Mitógenos/metabolismo , Fosfoserina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Células 3T3 , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Membrana Celular/metabolismo , Ciclina D1/genética , Quinasas Ciclina-Dependientes/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Células MCF-7 , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Transgénicos , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/genética , Transcripción Genética
15.
Oncogenesis ; 9(9): 83, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948740

RESUMEN

The essential G1-cyclin, CCND1, is a collaborative nuclear oncogene that is frequently overexpressed in cancer. D-type cyclins bind and activate CDK4 and CDK6 thereby contributing to G1-S cell-cycle progression. In addition to the nucleus, herein cyclin D1 was also located in the cytoplasmic membrane. In contrast with the nuclear-localized form of cyclin D1 (cyclin D1NL), the cytoplasmic membrane-localized form of cyclin D1 (cyclin D1MEM) induced transwell migration and the velocity of cellular migration. The cyclin D1MEM was sufficient to induce G1-S cell-cycle progression, cellular proliferation, and colony formation. The cyclin D1MEM was sufficient to induce phosphorylation of the serine threonine kinase Akt (Ser473) and augmented extranuclear localized 17ß-estradiol dendrimer conjugate (EDC)-mediated phosphorylation of Akt (Ser473). These studies suggest distinct subcellular compartments of cell cycle proteins may convey distinct functions.

16.
Adv Cancer Res ; 145: 29-47, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32089164

RESUMEN

The G coupled protein receptor CC chemokine receptor type 5 (CCR5) has the unusual characteristic in humans of being a developmentally non-essential gene that participates in several pathological processes including infection with HIV (Dean et al., 1996; Gupta et al., 2019; Samson et al., 1996), progression of stroke (Joy et al., 2019), osteoporosis (Xie et al., 2019) and the metastasis of cancer (Jiao et al., 2018; Velasco-Velazquez et al., 2012, 2014) (Reviewed in: Jiao, Nawab, et al., 2019; Jiao, Wang, & Pestell, 2019). The importance of CCR5 in HIV led to recent genetic engineering of humans to recreate a non-functional CCR5 gene. Thus, although the application of gene-editing tools, to manipulate human embryos is prohibited in the United States, and China. at the Second International Summit on Human Genome Editing in Hong Kong (http://www.nationalacademies.org/), it was claimed that CRISPR-Cas9 systems had been used to edit the CCR5 gene in twin baby girls. The importance of CCR5 in stroke has led to clinical trials using maraviroc (NCT03172026). The key function of CCR5 in cancer metastasis and homing (Jiao et al., 2018; Jiao, Nawab, et al., 2019; Velasco-Velazquez et al., 2012, 2014) has led to three active clinical trials for metastatic cancer using CCR5 antagonists (Jiao, Nawab, et al., 2019; Jiao, Wang, & Pestell, 2019). Thus, it was surprising to find that the all-cause mortality rate in individuals who are homozygous for the CCR5△32 allele in the United Kingdom normal population was increased >20% increase, with an almost 2 year reduction overall lifespan (Wei & Nielsen, 2019). The current review herein discusses the distinct functions of CCR5 in human disease and potential avenues for further research.


Asunto(s)
Neoplasias/metabolismo , Neoplasias/patología , Receptores CCR5/metabolismo , Humanos , Metástasis de la Neoplasia , Transducción de Señal
17.
Cancer Res ; 79(19): 4801-4807, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31292161

RESUMEN

Experiments of nature have revealed the peculiar importance of the G-protein-coupled receptor, C-C chemokine receptor type 5 (CCR5), in human disease since ancient times. The resurgence of interest in heterotypic signals in the onset and progression of tumorigenesis has led to the current focus on CCR5 as an exciting new therapeutic target for metastatic cancer with clinical trials now targeting breast and colon cancer. The eutopic expression of CCR5 activates calcium signaling and thereby augments regulatory T cell (Treg) differentiation and migration to sites of inflammation. The misexpression of CCR5 in epithelial cells, induced upon oncogenic transformation, hijacks this migratory phenotype. CCR5 reexpression augments resistance to DNA-damaging agents and is sufficient to induce cancer metastasis and "stemness". Recent studies suggest important cross-talk between CCR5 signaling and immune checkpoint function. Because CCR5 on Tregs serves as the coreceptor for human immunodeficiency virus (HIV) entry, CCR5-targeted therapeutics used in HIV, [small molecules (maraviroc and vicriviroc) and a humanized mAb (leronlimab)], are now being repositioned in clinical trials as cancer therapeutics. As CCR5 is expressed on a broad array of tumors, the opportunity for therapeutic repositioning and the rationale for combination therapy approaches are reviewed herein.


Asunto(s)
Neoplasias/inmunología , Neoplasias/metabolismo , Receptores CCR5/metabolismo , Animales , Carcinogénesis/inmunología , Carcinogénesis/metabolismo , Humanos , Inmunoterapia/métodos , Receptores CCR5/inmunología
18.
Expert Rev Anticancer Ther ; 19(7): 569-587, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31219365

RESUMEN

Introduction: Collaborative interactions between several diverse biological processes govern the onset and progression of breast cancer. These processes include alterations in cellular metabolism, anti-tumor immune responses, DNA damage repair, proliferation, anti-apoptotic signals, autophagy, epithelial-mesenchymal transition, components of the non-coding genome or onco-mIRs, cancer stem cells and cellular invasiveness. The last two decades have revealed that each of these processes are also directly regulated by a component of the cell cycle apparatus, cyclin D1. Area covered: The current review is provided to update recent developments in the clinical application of cyclin/CDK inhibitors to breast cancer with a focus on the anti-tumor immune response. Expert opinion: The cyclin D1 gene encodes the regulatory subunit of a proline-directed serine-threonine kinase that phosphorylates several substrates. CDKs possess phosphorylation site selectivity, with the phosphate-acceptor residue preceding a proline. Several important proteins are substrates including all three retinoblastoma proteins, NRF1, GCN5, and FOXM1. Over 280 cyclin D3/CDK6 substrates have b\een identified. Given the diversity of substrates for cyclin/CDKs, and the altered thresholds for substrate phosphorylation that occurs during the cell cycle, it is exciting that small molecular inhibitors targeting cyclin D/CDK activity have encouraging results in specific tumors.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antineoplásicos/farmacología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Ciclo Celular/efectos de los fármacos , Quinasas Ciclina-Dependientes/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Invasividad Neoplásica
19.
Oncogene ; 38(22): 4232-4249, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30718920

RESUMEN

Lysine methylation of histones and non-histone substrates by the SET domain containing protein lysine methyltransferase (KMT) G9a/EHMT2 governs transcription contributing to apoptosis, aberrant cell growth, and pluripotency. The positioning of chromosomes within the nuclear three-dimensional space involves interactions between nuclear lamina (NL) and the lamina-associated domains (LAD). Contact of individual LADs with the NL are dependent upon H3K9me2 introduced by G9a. The mechanisms governing the recruitment of G9a to distinct subcellular sites, into chromatin or to LAD, is not known. The cyclin D1 gene product encodes the regulatory subunit of the holoenzyme that phosphorylates pRB and NRF1 thereby governing cell-cycle progression and mitochondrial metabolism. Herein, we show that cyclin D1 enhanced H3K9 dimethylation though direct association with G9a. Endogenous cyclin D1 was required for the recruitment of G9a to target genes in chromatin, for G9a-induced H3K9me2 of histones, and for NL-LAD interaction. The finding that cyclin D1 is required for recruitment of G9a to target genes in chromatin and for H3K9 dimethylation, identifies a novel mechanism coordinating protein methylation.


Asunto(s)
Ciclina D1/metabolismo , Metilación de ADN/fisiología , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Ciclo Celular/fisiología , Línea Celular , Línea Celular Tumoral , Cromatina/metabolismo , Cromosomas/fisiología , Células HEK293 , Humanos , Células MCF-7 , Unión Proteica/fisiología
20.
Stem Cell Reports ; 12(1): 135-151, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30554919

RESUMEN

DACH1 abundance is reduced in human malignancies, including breast cancer. Herein DACH1 was detected among multipotent fetal mammary stem cells in the embryo, among mixed lineage precursors, and in adult basal cells and (ERα+) luminal progenitors. Dach1 gene deletion at 6 weeks in transgenic mice reduced ductal branching, reduced the proportion of mammary basal cells (Lin- CD24med CD29high) and reduced abundance of basal cytokeratin 5, whereas DACH1 overexpression induced ductal branching, increased Gata3 and Notch1, and expanded mammosphere formation in LA-7 breast cells. Mammary gland-transforming growth factor ß (TGF-ß) activity, known to reduce ductal branching and to reduce the basal cell population, increased upon Dach1 deletion, associated with increased SMAD phosphorylation. Association of the scaffold protein Smad anchor for receptor activation with Smad2/3, which facilitates TGF-ß activation, was reduced by endogenous DACH1. DACH1 increases basal cells, enhances ductal formation and restrains TGF-ß activity in vivo.


Asunto(s)
Proteínas del Ojo/genética , Glándulas Mamarias Animales/crecimiento & desarrollo , Células Madre Embrionarias de Ratones/metabolismo , Células 3T3 , Animales , Células Cultivadas , Proteínas del Ojo/metabolismo , Femenino , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Ratones , Células Madre Embrionarias de Ratones/citología , Ratas , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proteínas Smad/genética , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA