Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Stem Cell Rev Rep ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023738

RESUMEN

The cerebellum has historically been primarily associated with the regulation of precise motor functions. However, recent findings suggest that it also plays a pivotal role in the development of advanced cognitive functions, including learning, memory, and emotion regulation. Pathological changes in the cerebellum, whether congenital hereditary or acquired degenerative, can result in a diverse spectrum of disorders, ranging from genetic spinocerebellar ataxias to psychiatric conditions such as autism, and schizophrenia. While studies in animal models have significantly contributed to our understanding of the genetic networks governing cerebellar development, it is important to note that the human cerebellum follows a protracted developmental timeline compared to the neocortex. Consequently, employing animal models to uncover human-specific molecular events in cerebellar development presents significant challenges. The emergence of human induced pluripotent stem cells (hiPSCs) has provided an invaluable tool for creating human-based culture systems, enabling the modeling and analysis of cerebellar physiology and pathology. hiPSCs and their differentiated progenies can be derived from patients with specific disorders or carrying distinct genetic variants. Importantly, they preserve the unique genetic signatures of the individuals from whom they originate, allowing for the elucidation of human-specific molecular and cellular processes involved in cerebellar development and related disorders. This review focuses on the technical advancements in the utilization of hiPSCs for the generation of both 2D cerebellar neuronal cells and 3D cerebellar organoids.

2.
Stem Cell Res ; 77: 103435, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733812

RESUMEN

We used a non-integrated reprogramming approach to establish a human induced pluripotent stem cell (hiPSC) line (INNDSUi004-A) from the skin fibroblasts of a 13-year-old female individual with Congenital Nemaline Myopath. The cells obtained have typical characteristics of embryonic stem cells, show expression of specific pluripotency markers, and can differentiate into three germ layers in vitro. This iPSC cell line has the genetic information of the patient and is a good model for studying disease mechanisms and developing novel therapies.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Miopatías Nemalínicas , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Miopatías Nemalínicas/patología , Miopatías Nemalínicas/genética , Femenino , Línea Celular , Adolescente , Fibroblastos/metabolismo , Reprogramación Celular
3.
World J Stem Cells ; 16(2): 137-150, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38455095

RESUMEN

Blood vessels constitute a closed pipe system distributed throughout the body, transporting blood from the heart to other organs and delivering metabolic waste products back to the lungs and kidneys. Changes in blood vessels are related to many disorders like stroke, myocardial infarction, aneurysm, and diabetes, which are important causes of death worldwide. Translational research for new approaches to disease modeling and effective treatment is needed due to the huge socio-economic burden on healthcare systems. Although mice or rats have been widely used, applying data from animal studies to human-specific vascular physiology and pathology is difficult. The rise of induced pluripotent stem cells (iPSCs) provides a reliable in vitro resource for disease modeling, regenerative medicine, and drug discovery because they carry all human genetic information and have the ability to directionally differentiate into any type of human cells. This review summarizes the latest progress from the establishment of iPSCs, the strategies for differentiating iPSCs into vascular cells, and the in vivo transplantation of these vascular derivatives. It also introduces the application of these technologies in disease modeling, drug screening, and regenerative medicine. Additionally, the application of high-tech tools, such as omics analysis and high-throughput sequencing, in this field is reviewed.

4.
Stem Cell Res ; 77: 103386, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38484449

RESUMEN

We obtained skin fibroblasts from a 34-year-old healthy woman and established a human induced pluripotent stem cell (hiPSC) line (INDSUi005-A) using a non-integrated reprogramming approach. The obtained cells have typical characteristics of embryonic stem cells, can express specific pluripotency markers and have the ability to differentiate into three germ layers in vitro. This iPSC cell line can be used as an in vitro model for studying disease mechanisms and developing novel therapies.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Femenino , Adulto , Línea Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Pueblo Asiatico , Reprogramación Celular , Pueblos del Este de Asia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...