Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 125(Pt A): 111160, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37948987

RESUMEN

BACKGROUND: Platanus acerifolia is recognized as a source of allergenic pollen worldwide. Currently, five Platanus acerifolia pollen allergens belonging to different protein families have been identified, in which profilin and enolase were characterized by our group recently. Besides, we also screened and identified a novel allergen candidate as triosephosphate isomerase, which was different from already known types of pollen allergens. However, the role of this novel allergen group in Platanus acerifolia pollen allergy was unclear. Therefore, we further investigated the allergenicity and clarify its clinical relevance in this study. METHODS: The natural triosephosphate isomerase from Platanus acerifolia pollen was purified by three steps of chromatography and identified by mass spectrometry. The cDNA sequence of this protein was matched from in-house transcripts based on internal peptide sequences, which was further confirmed by PCR cloning. The recombinant triosephosphate isomerase was expressed and purified from E. coli. Allergenicity analysis of this protein was carried out by enzyme linked immunosorbent assay, immunoblot, and basophil activation test. RESULTS: A novel allergen group belonging to triosephosphate isomerase was firstly identified in Platanus acerifolia pollen and named as Pla a 7. The cDNA of Pla a 7 contained an open reading frame of 762 bp encoding 253 amino acids. The natural Pla a 7 displayed 41.4% IgE reactivity with the patients' sera by ELISA, in which the absorbance value showed correlation to the serum sIgE against Platanus acerifolia pollen extract. Inhibition of IgE-binding to pollen extracts reached 26%-94% in different Pla a 7-positive sera. The recombinant Pla a 7 exhibited weaker IgE-reactivity in ELISA than its natural form, but showed comparable activity in immunoblot. The allergenicity was further confirmed by basophil activation test. CONCLUSIONS: Triosephosphate isomerase (Pla a 7) was first recognized as pollen allergen in Platanus acerifolia pollen, which is a completely different type of pollen allergen from those previously reported. This finding is essential to enrich information on allergen components and pave the way for molecular diagnosis or treatment strategies for Platanus acerifolia pollen allergy.


Asunto(s)
Rinitis Alérgica Estacional , Humanos , Rinitis Alérgica Estacional/diagnóstico , Escherichia coli/genética , ADN Complementario , Triosa-Fosfato Isomerasa/genética , Antígenos de Plantas/química , Alérgenos/genética , Alérgenos/química , Polen , Inmunoglobulina E
2.
Mol Immunol ; 153: 170-180, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36525884

RESUMEN

BACKGROUND: The Humulus japonicus pollen is one of the most common allergenic pollens in China. However, little is unveiled regarding the allergenic components in Humulus japonicus pollen. Our study aimed to purify and identify the pathogenesis-related 1 (PR-1) protein from Humulus japonicus pollen, and to characterize the molecular and immunochemical properties of this novel allergen. METHODS: The natural PR-1 protein (named as Hum j PR-1) was purified from Humulus japonicus pollen extracts with a combined strategy of chromatography, and identified by mass spectrometry. The coding sequence of Hum j PR-1 was confirmed by cDNA cloning. The recombinant Hum j PR-1 was expressed and purified from Escherichia coli. The allergenicity was assessed by immunoblot, enzyme-linked immunosorbent assay (ELISA), inhibition ELISA, and basophil activation test using Humulus japonicus allergic patients' whole blood. The physicochemical properties and 3-dimensional structure of it were comprehensively characterized by in silico methods. RESULTS: The allergenicity analysis revealed that 76.6 % (23/30) of the Humulus japonicus pollen allergic patients displayed specific IgE recognition of the natural Hum j PR-1. The cDNA sequence of Hum j PR-1 had a 516-bp open reading frame encoding 171 amino acids. Physicochemical analysis indicated that Hum j PR-1 was a stable and relatively thermostable protein. Hum j PR-1 shared a similar 3-dimensional folding pattern with other homologous allergens, which was a unique αßα sandwich structure containing 4 α-helices and 6 antiparallel ß-sheets, encompassing 4 conserved CAP domain. CONCLUSION: The natural PR-1 was firstly purified and characterized as a major allergenic allergen in Humulus japonicus pollen. These findings would contribute to developing diagnostic and therapeutic strategies for Humulus japonicus pollinosis.


Asunto(s)
Humulus , Hipersensibilidad , Humanos , Alérgenos/química , Humulus/genética , ADN Complementario , Polen , Proteínas/genética , Clonación Molecular , Proteínas de Plantas/química
3.
Int Immunopharmacol ; 113(Pt A): 109313, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36252468

RESUMEN

BACKGROUND: The pollen from Platanus acerifolia (P. acerifolia) is one of the main causes of allergic disorders. To date, only 4 allergens have been identified from this pollen. But previous studies showed that there still exist under-recognized allergens in it. The aim of this study was to comprehensively investigate the newly identified enolase (Pla a 6) as a novel allergen in the P. acerifolia pollen. METHODS: The natural (n) Pla a 6 was purified by combined chromatographic strategies. According to the identified internal peptides, the cDNA sequence encoding this allergen was matched from the mRNA-sequencing results of P. acerifolia pollen, which was further amplified and cloned. The recombinant (r) Pla a 6 was expressed and purified from E. coli. The allergenicity of this novel allergen was characterized by enzyme linked immunosorbent assay (ELISA), Western blot, inhibition ELISA, and basophil activation test (BAT). RESULTS: A novel allergen from P. acerifolia pollen, named as Pla a 6 was thoroughly studied, which contained an open reading frame of 1338 bp encoding 445 amino acids. The IgE-binding activity of nPla a 6 was initially proved by Western-blot, and a similar IgE-binding pattern to rPla a 6 was also exhibited. Moreover, the positivity for specific IgE against rPla a 6 was tested as 45.95% (17/37) by ELISA, and IgE binding to pollen extract could be inhibited up to 45.77% by 10 µg/ml of rPla a 6. The protein was also confirmed to activate patients' basophils. CONCLUSIONS: In this study, a novel allergen belonging to enolase family was comprehensively investigated and characterized through its natural and recombinant forms in P. acerifolia pollen. The study will contribute to the development of novel molecular-based diagnostic and therapeutic approaches for P. acerifolia pollen allergy.


Asunto(s)
Alérgenos , Inmunoglobulina E , Humanos , Alérgenos/genética , Alérgenos/química , Escherichia coli/genética , Fosfopiruvato Hidratasa/genética , Polen
4.
Int Immunopharmacol ; 106: 108601, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35158224

RESUMEN

BACKGROUND: The Platanus acerifolia (P. acerifolia) pollen is one of the most common causes of allergic respiratory symptoms in China. However, the allergenic components in P. acerifolia are not fully studied yet. The study aimed to determine the molecular and immunochemical characterization of the profilin from P. acerifolia pollen. METHODS: The coding sequence of profilin was amplified, cloned, and then expressed in Escherichia coli BL21 cells and purified by nickel affinity chromatography. Protein refolding was followed by structural characterization and homology 3D model building. The allergenicity and cross-reactivity were assessed by ELISA, immunoblotting, or basophil activation test (BAT) using the sera of P. acerifolia allergic patients. RESULTS: The cDNA sequence of profilin was cloned with a 396 bp open reading frame coding for 131 amino acids. The molecular weight of the profilin was approximately 14 kDa, and the predicted structure consisted of 3 α-helixes and 7 ß-sheets. Physicochemical analysis indicated the profilin was a stable, relatively thermostable, and relatively conserved protein. The allergenicity determined by ELISA, western blot, and BAT suggested 76.9% (30/39) of the P. acerifolia pollen allergic patients displayed specific IgE recognition of the profilin. The profilin shared > 80% sequence identity with Pop n 2, the profilin from Populus nigra, and observed a significant cross-reactivity with Pop n 2 in IgE-inhibition assay. CONCLUSION: Profilin, as one of the major component allergens in P. acerifolia pollen, was identified and characterized at molecular and immunochemical levels in this study. These findings would contribute to developing diagnostic and therapeutic strategies for P. acerifolia pollen allergic patients.


Asunto(s)
Alérgenos , Profilinas , Alérgenos/química , Alérgenos/genética , Secuencia de Aminoácidos , Clonación Molecular , Reacciones Cruzadas , Humanos , Polen , Profilinas/genética , Proteínas Recombinantes/genética
5.
Mol Immunol ; 143: 41-49, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35033813

RESUMEN

BACKGROUND: Cockroaches are an important source of indoor allergens. Environmental exposure to cockroach allergens is closely associated with the development of immunoglobulin E (IgE)-mediated allergic diseases. However, the allergenic components in the American cockroaches are not fully studied yet. In order to develop novel diagnostic and therapeutic strategies for cockroach allergy, it is necessary to comprehensively investigate this undescribed allergen in the American cockroach. METHODS: The full-length cDNA of the potential allergen was isolated from the cDNA library of the American cockroach by PCR cloning. Both the recombinant and natural protein molecules were purified and characterized. The allergenicity was further analyzed by enzyme linked immunosorbent assay, immunoblot, and basophil activation test using sera from cockroach allergic patients. RESULTS: A novel allergen belonging to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was firstly identified in the American cockroach and named as Per a 13. The cDNA of this allergen is 1255 base pairs in length and contains an open reading frame of 999 base pairs, encoding 332 amino acids. The purified Per a 13 was fully characterized and assessed to react with IgEs from 49.3 % of cockroach allergic patients, and patients with allergic rhinitis were more sensitized to it. Moreover, the allergenicity was further confirmed by immunoblot and basophil activation test. CONCLUSIONS: We firstly identified GAPDH (Per a 13) in the American cockroach, which is a novel type of inhalant allergen derived from animal species. These findings could be useful in developing novel diagnostic and therapeutic strategies for cockroach allergy.


Asunto(s)
Alérgenos/inmunología , Cucarachas/inmunología , Proteínas de Insectos/inmunología , Adolescente , Adulto , Anciano , Alérgenos/química , Alérgenos/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Basófilos/metabolismo , Niño , Preescolar , Clonación Molecular , ADN Complementario/genética , Femenino , Humanos , Inmunización , Inmunoglobulina E/metabolismo , Proteínas de Insectos/química , Proteínas de Insectos/aislamiento & purificación , Masculino , Persona de Mediana Edad , Proteínas Recombinantes/aislamiento & purificación , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...