Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
1.
Discov Oncol ; 15(1): 449, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39278863

RESUMEN

OBJECTIVE: Accumulating studies reported the crucial roles of tRFs in tumorigenesis. However, their further mechanisms and clinical values remains unclear. This study aimed at the further investigation of tRF-Leu in breast cancer chemotherapy resistance. METHODS: The high-throughput sequencing was performed and identified the downregulation of tRF-Leu in MCF7/ADR cells. The function of tRF-Leu in breast cancer cells and breast cancer chemotherapy resistance was investigated in vitro and in vivo, including colony formation assay, CCK-8 assay, transwell assay and apoptosis assay. The binding site of tRF-Leu on BIRC5 was verified by dual-luciferase assay. RESULTS: tRF-Leu was downregulated in MCF7/ADR cells. Overexpression of tRF-Leu inhibited the migration of breast cancer cells. Furthermore, tRF-Leu could reverse the resistance of MCF7/ADR cells to Adriamycin both in vitro and in vivo. BIRC5 was a target of tRF-Leu, which might be involved in the chemotherapy resistance regulation. CONCLUSION: We demonstrated that tRF-Leu could inhibit the chemotherapy resistance of breast cancer by targeting BIRC5. These findings might identify new biomarkers of breast cancer therapy and bring new strategies to reverse chemotherapy resistance.

2.
Nat Aging ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266768

RESUMEN

The accumulation and systemic propagation of senescent cells contributes to physiological aging and age-related pathology. However, which cell types are most susceptible to the aged milieu and could be responsible for the propagation of senescence has remained unclear. Here we found that physiologically aged bone marrow monocytes/macrophages (BMMs) propagate senescence to multiple tissues, through extracellular vesicles (EVs), and drive age-associated dysfunction in mice. We identified peroxisome proliferator-activated receptor α (PPARα) as a target of microRNAs within aged BMM-EVs that regulates downstream effects on senescence and age-related dysfunction. Demonstrating therapeutic potential, we report that treatment with the PPARα agonist fenofibrate effectively restores tissue homeostasis in aged mice. Suggesting conservation to humans, in a cohort study of 7,986 participants, we found that fenofibrate use is associated with a reduced risk of age-related chronic disease and higher life expectancy. Together, our findings establish that BMMs can propagate senescence to distant tissues and cause age-related dysfunction, and they provide supportive evidence for fenofibrate to extend healthy lifespan.

3.
Tuberculosis (Edinb) ; 148: 102551, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39084000

RESUMEN

As one of the factors affecting the treatment outcomes, drug tolerance in mycobacteriosis has not been paid due attention. Genome-wide association studies on 607 Mycobacterium tuberculosis clinical isolates with phenotypic drug susceptibility test data revealed that a K114N mutation on the rv2820c gene was highly enriched in capreomycin-resistant isolates (32/213, 15.02%). However, the mutation was also observed in capreomycin-sensitive isolates (10/394, 2.53%). In most cases (31/42, 73.81%), the rv2820c K114N mutation occurred in isolates with the known capreomycin resistance conferring mutation rrs A1401G. In contrast, the general frequency of the rv2820c K114N mutation was low in 7061 genomes downloaded from the National Center for Biotechnology Information database. To determine the impact of this mutation on the antimycobacterial activity of capreomycin, the intact rv2820c gene and the rv2820c K114N mutant were over-expressed in Mycobacterium smegmatis (Ms), and the results of susceptibility tests showed that the rv2820c K114N mutation did not affect the minimum inhibition concentration (MIC) of capreomycin. Subsequently, the data of time-kill assays showed that, it took only 2 h of capreomycin treatment (40 µg/ml, 5 × MIC) to kill 99.9% bacterial cells of Ms MC2155 pMV261::rv2820cH37Rv, while it took 6 h to achieve that for Ms MC2155 pMV261::rv2820cK114N. Taken together, these data suggested that the rv2820c K114N mutation is related with capreomycin tolerance, which merits further investigation.


Asunto(s)
Capreomicina , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis , Capreomicina/farmacología , Capreomicina/uso terapéutico , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Humanos , Farmacorresistencia Bacteriana/genética , Proteínas Bacterianas/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/efectos de los fármacos , Antituberculosos/farmacología , Fenotipo
4.
Emerg Microbes Infect ; 13(1): 2374030, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39023395

RESUMEN

Although para-aminosalicylic acid (PAS) has been used to treat tuberculosis for decades, mechanisms of resistance to this drug in Mycobacterium tuberculosis (M. tuberculosis) clinical isolates have not been thoroughly investigated. Previously, we found that decreased methylenetetrahydrofolate reductase (MTHFR) activity of Rv2172c led to increased sensitivity to antifolates in M. tuberculosis. In this study, we collected the genome-sequencing data of 173 PAS-resistant and 803 PAS-sensitive clinical isolates and analyzed rv2172c mutations in those 976 isolates. The results showed that two mutations (T120P and M172V) on rv2172c could be identified in a certain proportion (6.36%) of PAS-resistant isolates. The results of AlphaFold2 prediction indicated that the T120P or M172V mutation might affect the enzymatic activity of Rv2172c by influencing nicotinamide adenine dinucleotide (NADH) binding, and this was verified by subsequent biochemical analysis, demonstrating the role of residues Thr120 and Met172 on NADH binding and enzymatic activity of Rv2172c. In addition, the effect of rv2172c T120P or M172V mutation on methionine production and PAS resistance was determined in M. tuberculosis. The results showed that both T120P and M172V mutations caused increased intracellular methionine concentrations and high level PAS resistance. In summary, we discovered new molecular markers and also a novel mechanism of PAS resistance in M. tuberculosis clinical isolates and broadened the understanding of the NADH-dependent MTHFR catalytic mechanism of Rv2172c in M. tuberculosis, which will facilitate the molecular diagnosis of PAS resistance and also the development of new drugs targeting Rv2172c.


Asunto(s)
Ácido Aminosalicílico , Antituberculosos , Proteínas Bacterianas , Farmacorresistencia Bacteriana , Mutación , Mycobacterium tuberculosis , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Ácido Aminosalicílico/farmacología , Humanos , Antituberculosos/farmacología , Farmacorresistencia Bacteriana/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana , NAD/metabolismo , Tuberculosis/microbiología
5.
Plant Cell Environ ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995178

RESUMEN

Phloretin has different glycosylation modes in plants. Phlorizin (phloretin 2'-O-glucoside) is one of the glycosylation products of phloretin, and accumulates abundantly in apple plants. However, it is still unclear whether phlorizin is more beneficial for apple plants compared with other glycosylation products of phloretin. We created transgenic apple plants with different glycosylation modes of phloretin. In transgenic plants, the accumulation of phlorizin was partly replaced by that of trilobatin (phloretin 4'-O-glucoside) or phloretin 3',5'-di-C-glycoside. Compared with wild type, transgenic plants with less phlorizin showed dwarf phenotype, larger stomatal size, higher stomatal density and less tolerance to drought stress. Transcriptome and phytohormones assay indicate that phlorizin might regulate stomatal development and behaviour via controlling auxin and abscisic acid signalling pathways as well as carbonic anhydrase expressions. Transgenic apple plants with less phlorizin also showed less resistance to spider mites. Apple plants may hydrolyse phlorizin to produce phloretin, but cannot hydrolyse trilobatin or phloretin 3',5'-di-C-glycoside. Compared with its glycosylation products, phloretin is more toxic to spider mites. These results suggest that the glycosylation of phloretin to produce phlorizin is the optimal glycosylation mode in apple plants, and plays an important role in apple resistance to stresses.

6.
Eur J Med Chem ; 275: 116632, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38959726

RESUMEN

Glucagon-like peptide-1 receptor (GLP-1R) is a pivotal receptor involved in blood glucose regulation and influencing feeding behavior. It has received significant attention in the treatment of obesity and diabetes due to its potent incretin effect. Peptide GLP-1 receptor agonists (GLP-1RAs) have achieved tremendous success in the market, driving the vigorous development of small molecule GLP-1RAs. Currently, several small molecules have entered the clinical research stage. Additionally, recent discoveries of GLP-1R positive allosteric modulators (PAMs) are also unveiling new regulatory patterns and treatment methods. This article reviews the structure and functional mechanisms of GLP-1R, recent reports on small molecule GLP-1RAs and PAMs, as well as the optimization process. Furthermore, it combines computer simulations to analyze structure-activity relationships (SAR) studies, providing a foundation for exploring new strategies for designing small molecule GLP-1RAs.


Asunto(s)
Diseño de Fármacos , Receptor del Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Humanos , Relación Estructura-Actividad , Sitios de Unión , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Estructura Molecular , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/síntesis química
7.
Bioact Mater ; 36: 508-523, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39072285

RESUMEN

Obesity-induced chronic inflammation exacerbates multiple types of tissue/organ deterioration and stem cell dysfunction; however, the effects on skeletal tissue and the underlying mechanisms are still unclear. Here, we show that obesity triggers changes in the microRNA profile of macrophage-secreted extracellular vesicles, leading to a switch in skeletal stem/progenitor cell (SSPC) differentiation between osteoblasts and adipocytes and bone deterioration. Bone marrow macrophage (BMM)-secreted extracellular vesicles (BMM-EVs) from obese mice induced bone deterioration (decreased bone volume, bone microstructural deterioration, and increased adipocyte numbers) when administered to lean mice. Conversely, BMM-EVs from lean mice rejuvenated bone deterioration in obese recipients. We further screened the differentially expressed microRNAs in obese BMM-EVs and found that among the candidates, miR-140 (with the function of promoting adipogenesis) and miR-378a (with the function of enhancing osteogenesis) coordinately determine SSPC fate of osteogenic and adipogenic differentiation by targeting the Pparα-Abca1 axis. BMM miR-140 conditional knockout mice showed resistance to obesity-induced bone deterioration, while miR-140 overexpression in SSPCs led to low bone mass and marrow adiposity in lean mice. BMM miR-378a conditional depletion in mice led to obesity-like bone deterioration. More importantly, we used an SSPC-specific targeting aptamer to precisely deliver miR-378a-3p-overloaded BMM-EVs to SSPCs via an aptamer-engineered extracellular vesicle delivery system, and this approach rescued bone deterioration in obese mice. Thus, our study reveals the critical role of BMMs in mediating obesity-induced bone deterioration by transporting selective extracellular-vesicle microRNAs into SSPCs and controlling SSPC fate.

8.
Mol Divers ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38985379

RESUMEN

Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) emerges as a key single-chain transmembrane glycoprotein predominantly expressed in effector T cells and regulatory T cells. It plays a crucial role in tumor immunity by modulating T cell responses. Specifically, CTLA-4 dampens T cell activation and proliferation while bolstering the survival of regulatory T cell through its competitive interaction with B7 family molecules, thereby aiding tumor cells in eluding immune detection. Given CTLA-4's significant influence on tumor immune dynamics, an array of anti-CTLA-4 antibody therapeutics have been clinically developed to combat various malignancies, including melanoma, renal cell carcinoma, colorectal carcinoma, hepatocellular carcinoma, non-small cell lung carcinoma, and pleural mesothelioma, demonstrating notable clinical therapeutic effects. This paper aims to delve into CTLA-4's integral role in tumor immunity and to encapsulate the latest advancements in the clinical research of anti-CTLA-4 antibody.

10.
Talanta ; 277: 126378, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38870757

RESUMEN

In our previous study, a chemical derivatization reagent named 5-(dimethylamino) naphthalene-1-sulfonyl piperazine (Dns-PP) was developed to enhance the chromatographic retention and the mass spectrometric response of free fatty acids (FFAs) in reversed-phase liquid chromatography coupled with electrospray ionization-mass spectrometry (RPLC-ESI-MS). However, Dns-PP exhibited strong preferences for long-chain FFAs, with limited improvement for short- or medium-chain FFAs. In this study, a new series of labeling reagents targeting FFAs were designed, synthesized, and evaluated. Among these reagents, Tmt-PP (N2, N2, N4, N4-tetramethyl-6-(4-(piperazin-1-ylsulfonyl) phenyl)-1,3,5-triazine-2,4-diamine) exhibited the best MS response and was selected for further evaluations. We compared Tmt-PP with Dns-PP and four commonly used carboxyl labeling reagents from existing studies, demonstrating the advantages of Tmt-PP. Further comparisons between Tmt-PP and Dns-PP in measuring FFAs from biological samples revealed that Tmt-PP labeling enhanced the MS response for about 80 % (30/38) of the measured FFAs, particularly for short- and medium-chain FFAs. Moreover, Tmt-PP labeling significantly improved the chromatographic retention of short-chain FFAs. To ensure accurate quantification, we developed a stable isotope-labeled Tmt-PP (i.e., d12-Tmt-PP) to react with chemical standards and serve as one-to-one internal standards (IS). The method was validated for accuracy, precision, sensitivity, linearity, stability, extraction efficiency, as well as matrix effect. Overall, this study introduced a new chemical derivatization reagent Tmt-PP (d12-Tmt-PP), providing a sensitive and accurate option for quantifying FFAs in biological samples.


Asunto(s)
Piperazinas , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Piperazinas/química , Animales , Cromatografía Liquida/métodos , Ácidos Grasos/química , Ácidos Grasos/análisis , Indicadores y Reactivos/química , Sulfonas/química , Humanos , Cromatografía Líquida con Espectrometría de Masas
11.
Biotechnol Biofuels Bioprod ; 17(1): 80, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877488

RESUMEN

To increase the production of biomass and astaxanthin from Haematococcus pluvialis to meet the high market demand for astaxanthin, this study recruited two typical and negligible phytohormones (namely resveratrol and catechol) for the stepwise treatments of H. pluvialis. It was found that the hybrid and sequential treatments of resveratrol (200 µmol) and catechol (100 µmol) had achieved the maximum astaxanthin content at 33.96 mg/L and 42.99 mg/L, respectively. Compared with the hybrid treatment, the physiological data of H. pluvialis using the sequential strategy revealed that the enhanced photosynthetic performance via the Calvin cycle by RuBisCO improved the biomass accumulation during the macrozooid stage; meanwhile, the excessive ROS production had occurred to enhance astaxanthin production with the help of NADPH overproduction during the hematocyst stage. Overall, this study provides improved knowledge of the impacts of phytohormones in improving biomass and astaxanthin of H. pluvialis, which shed valuable insights for advancing microalgae-based biorefinery.

12.
Analyst ; 149(13): 3530-3536, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38757525

RESUMEN

ATP plays a crucial role in cell energy supply, so the quantification of intracellular ATP levels is particularly important for understanding many physio-pathological processes. The intracellular quantification of this non-electroactive molecule can be realized using aptamer-modified nanoelectrodes, but is hindered by the limited quantity of modification and electroactive tags on the nanosized electrodes. Herein, we developed a simple but effective electrochemical signal amplification strategy for intracellular ATP detection, which replaces the regular ATP aptamer-linked ferrocene monomer with a polymer, thus greatly magnifying the amounts of electrochemical reporters linked to one chain of the aptamer and enhancing the signals. This ferrocene polymer-ATP aptamer was further immobilized onto Au nanowire electrodes (SiC@C@Au NWEs) to achieve accurate quantification of intracellular ATP in single cells, presenting high electrochemical signal output and high specificity. This work not only provides a powerful tool for quantifying intracellular ATP but also offers a simple and versatile strategy for electrochemical signal amplification in the detection of broader non-electroactive molecules involved in different kinds of intracellular physiological processes.


Asunto(s)
Adenosina Trifosfato , Aptámeros de Nucleótidos , Técnicas Biosensibles , Técnicas Electroquímicas , Compuestos Ferrosos , Oro , Metalocenos , Adenosina Trifosfato/análisis , Aptámeros de Nucleótidos/química , Humanos , Oro/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Metalocenos/química , Compuestos Ferrosos/química , Técnicas Biosensibles/métodos , Electrodos , Polímeros/química , Nanocables/química , Límite de Detección , Células HeLa
13.
Bioorg Chem ; 148: 107433, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754311

RESUMEN

Second-generation AR antagonists, such as enzalutamide, are the primary therapeutic agents for advanced prostate cancer. However, the development of both primary and secondary drug resistance leads to treatment failures and patient mortality. Bifunctional agents that simultaneously antagonize and degrade AR block the AR signaling pathway more completely and exhibit excellent antiproliferative activity against wild-type and drug-resistant prostate cancer cells. Here, we reported the discovery and optimization of a series of biphenyl derivatives as androgen receptor antagonists and degraders. These biphenyl derivatives exhibited potent antiproliferative activity against LNCaP and 22Rv1 cells. Our discoveries enrich the diversity of small molecule AR degraders and offer insights for the development of novel AR degraders for the treatment of enzalutamide-resistant prostate cancer.


Asunto(s)
Antagonistas de Receptores Androgénicos , Antineoplásicos , Benzamidas , Compuestos de Bifenilo , Proliferación Celular , Resistencia a Antineoplásicos , Nitrilos , Feniltiohidantoína , Neoplasias de la Próstata , Receptores Androgénicos , Humanos , Masculino , Benzamidas/farmacología , Benzamidas/química , Benzamidas/síntesis química , Nitrilos/química , Nitrilos/farmacología , Feniltiohidantoína/farmacología , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/química , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/antagonistas & inhibidores , Receptores Androgénicos/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Estructura Molecular , Antagonistas de Receptores Androgénicos/farmacología , Antagonistas de Receptores Androgénicos/química , Antagonistas de Receptores Androgénicos/síntesis química , Antagonistas de Receptores Androgénicos/uso terapéutico , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral
14.
Fish Shellfish Immunol ; 150: 109658, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38801841

RESUMEN

microRNAs are a class of non-coding RNAs with post-transcriptional regulatory functions in eukaryotes. In our previous study, miR-184-3p was identified in the hemocyte transcriptome of Pinctada fucata martensii (Pm-miR-184-3p), and its expression was shown to be up-regulated following transplantation surgery; however, its role in regulating transplantation immunity has not yet been clarified. Here, the role of Pm-miR-184-3p in regulating the immune response of P. f. martensii was studied. The expression of Pm-miR-184-3p increased following the stimulation of pathogen-associated molecular patterns, and Pm-miR-184-3p overexpression increased the activity of antioxidant-related enzymes, such as superoxide dismutase and catalase. Transcriptome analysis obtained 1096 differentially expressed genes (DEGs) after overexpression of Pm-miR-184-3p, and these DEGs were significantly enriched in conserved pathways such as the Cell cycle pathway and NF-kappa B signaling pathway, as well as GO terms including base excision repair, cell cycle, and DNA replication, suggesting that Pm-miR-184-3p could enhance the inflammation process. Target prediction and dual luciferase analysis revealed that pro-inflammatory related genes Pm-TLR3 and Pm-FN were the potential target of Pm-miR-184-3p. We speculate that Pm-miR-184-3p may utilize negative regulation of target genes to delay the activation of corresponding immune pathways, potentially preventing excessive inflammatory responses and achieving a delicate balance within the organism. Overall, Pm-miR-184-3p play a key role in regulating cellular responses to transplantation. Our findings provide new insights into the immune response of P. f. martensii to transplantation.


Asunto(s)
Inmunidad Innata , MicroARNs , Pinctada , Animales , Pinctada/genética , Pinctada/inmunología , MicroARNs/genética , Inmunidad Innata/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Transcriptoma
15.
Biomed Pharmacother ; 176: 116835, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810402

RESUMEN

Lavender, an aromatic plant with a history dating back to ancient Egypt and Greece, is consumed because of its diverse pharmacological properties, including sedation, sleep aid, and antidepressant effects. However, the mechanisms underlying these antidepressant properties remain unclear. In this study, we explored the impact of lavender essential oil (LEO) inhalation on the diversity of gut microbiota, metabolites, and differential gene expression in the hippocampus of alcohol-withdrawn depressive rats. Additionally, we examined alterations in the hippocampal transient receptor potential (TRP) channel-mediated inflammatory regulation within the brain-gut axis of depressive rats. The results demonstrated a significant decrease in sucrose preference, diminished activity in the central zone of the open field test, and prolonged immobility time in the forced swim test in alcohol-withdrawn depressive rats, indicating the amelioration of depressive states following lavender essential oil inhalation. 16 S rDNA sequencing analysis revealed a significant reduction in Bacteroidota and Muribaculaceae in the gut of alcohol-withdrawn depressive rats, whereas lavender essential oil significantly increased the relative abundance of Muribaculaceae and other bacterial species. Metabolomic analysis identified 646 distinct metabolites as highly correlated biomarkers between the model and lavender essential oil groups. Furthermore, lavender essential oil inhalation significantly attenuated hippocampal inflammatory factors IL-2, IL-6, IL-1ß, and TNF-α. This study identified elevated expression of Trpv4 and Calml4 in the hippocampal region of alcohol-withdrawn depressed rats and showed that lavender essential oil inhalation regulated aberrantly expressed genes. Our research suggests that lavender essential oil downregulates Trpv4, modulates inflammatory factors, and alleviates depressive-like behavior in alcohol withdrawal rats.


Asunto(s)
Conducta Animal , Depresión , Microbioma Gastrointestinal , Hipocampo , Lavandula , Aceites Volátiles , Aceites de Plantas , Animales , Aceites Volátiles/farmacología , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Masculino , Depresión/tratamiento farmacológico , Depresión/metabolismo , Aceites de Plantas/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ratas , Conducta Animal/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Antidepresivos/farmacología , Ratas Sprague-Dawley , Transcriptoma/efectos de los fármacos , Etanol , Eje Cerebro-Intestino/efectos de los fármacos , Administración por Inhalación
16.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 450-455, 2024 May 15.
Artículo en Chino | MEDLINE | ID: mdl-38802903

RESUMEN

OBJECTIVES: To investigate the incidence rate, clinical characteristics, and prognosis of neonatal stroke in Shenzhen, China. METHODS: Led by Shenzhen Children's Hospital, the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022. The incidence, clinical characteristics, treatment, and prognosis of neonatal stroke in Shenzhen were analyzed. RESULTS: The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137, 1/6 060, and 1/7 704, respectively. Ischemic stroke accounted for 75% (27/36); boys accounted for 64% (23/36). Among the 36 neonates, 31 (86%) had disease onset within 3 days after birth, and 19 (53%) had convulsion as the initial presentation. Cerebral MRI showed that 22 neonates (61%) had left cerebral infarction and 13 (36%) had basal ganglia infarction. Magnetic resonance angiography was performed for 12 neonates, among whom 9 (75%) had involvement of the middle cerebral artery. Electroencephalography was performed for 29 neonates, with sharp waves in 21 neonates (72%) and seizures in 10 neonates (34%). Symptomatic/supportive treatment varied across different hospitals. Neonatal Behavioral Neurological Assessment was performed for 12 neonates (33%, 12/36), with a mean score of (32±4) points. The prognosis of 27 neonates was followed up to around 12 months of age, with 44% (12/27) of the neonates having a good prognosis. CONCLUSIONS: Ischemic stroke is the main type of neonatal stroke, often with convulsions as the initial presentation, involvement of the middle cerebral artery, sharp waves on electroencephalography, and a relatively low neurodevelopment score. Symptomatic/supportive treatment is the main treatment method, and some neonates tend to have a poor prognosis.


Asunto(s)
Accidente Cerebrovascular , Humanos , Masculino , Recién Nacido , Femenino , China/epidemiología , Accidente Cerebrovascular/epidemiología , Pronóstico , Electroencefalografía , Incidencia , Imagen por Resonancia Magnética
17.
Heliyon ; 10(9): e30393, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38711668

RESUMEN

Hydroxychloroquine (HCQ) has gained significant attention as a therapeutic option for systemic lupus erythematosus (SLE) because of its multifaceted mechanism of action. It is a lipophilic, lysosomotropic drug, that easily traverses cell membranes and accumulates in lysosomes. Once accumulated, HCQ alkalizes lysosomes within the cytoplasm, thereby disrupting their function and interfering with processes like antigen presentation. Additionally, HCQ has shown potential in modulating T-cell responses, inhibiting cytokine production, and influencing Toll-like receptor signaling. Its immunomodulatory effects have generated interest in its application for autoimmune disorders. Despite its established efficacy, uncertainties persist regarding the optimal therapeutic concentrations and their correlation with adverse effects such as retinal toxicity. Therefore, standardized dosing and monitoring guidelines are crucial. In this study, we provide a comprehensive review of the mechanisms, efficacy, dosing variations, and retinal toxicity profiles of HCQ, which are essential to optimize SLE treatment protocols and ensure patient safety.

18.
Heliyon ; 10(8): e30123, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38699735

RESUMEN

Background: Tumor genetic anomalies and immune dysregulation are pivotal in the progression of multiple myeloma (MM). Accurate patient stratification is essential for effective MM management, yet current models fail to comprehensively incorporate both molecular and immune profiles. Methods: We examined 776 samples from the MMRF CoMMpass database, employing univariate regression with LASSO and CIBERSORT algorithms to identify 15 p53-related genes and six immune cells with prognostic significance in MM. A p53-TIC (tumor-infiltrating immune cells) classifier was constructed by calculating scores using the bootstrap-multicox method, which was further validated externally (GSE136337) and through ten-fold internal cross-validation for its predictive reliability and robustness. Results: The p53-TIC classifier demonstrated excellent performance in predicting the prognosis in MM. Specifically, patients in the p53low/TIChigh subgroup had the most favorable prognosis and the lowest tumor mutational burden (TMB). Conversely, those in the p53high/TIClow subgroup, with the least favorable prognosis and the highest TMB, were predicted to have the best anti-PD1 and anti-CTLA4 response rate (40 %), which can be explained by their higher expression of PD1 and CTLA4. The three-year area under the curve (AUC) was 0.80 in the total sample. Conclusions: Our study highlights the potential of an integrated analysis of p53-associated genes and TIC in predicting prognosis and aiding clinical decision-making in MM patients. This finding underscores the significance of comprehending the intricate interplay between genetic abnormalities and immune dysfunction in MM. Further research into this area may lead to the development of more effective treatment strategies.

19.
Theranostics ; 14(6): 2544-2559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646641

RESUMEN

Background: Mechanical forces are indispensable for bone healing, disruption of which is recognized as a contributing cause to nonunion or delayed union. However, the underlying mechanism of mechanical regulation of fracture healing is elusive. Methods: We used the lineage-tracing mouse model, conditional knockout depletion mouse model, hindlimb unloading model and single-cell RNA sequencing to analyze the crucial roles of mechanosensitive protein polycystin-1 (PC1, Pkd1) promotes periosteal stem/progenitor cells (PSPCs) osteochondral differentiation in fracture healing. Results: Our results showed that cathepsin (Ctsk)-positive PSPCs are fracture-responsive and mechanosensitive and can differentiate into osteoblasts and chondrocytes during fracture repair. We found that polycystin-1 declines markedly in PSPCs with mechanical unloading while increasing in response to mechanical stimulus. Mice with conditional depletion of Pkd1 in Ctsk+ PSPCs show impaired osteochondrogenesis, reduced cortical bone formation, delayed fracture healing, and diminished responsiveness to mechanical unloading. Mechanistically, PC1 facilitates nuclear translocation of transcriptional coactivator TAZ via PC1 C-terminal tail cleavage, enhancing osteochondral differentiation potential of PSPCs. Pharmacological intervention of the PC1-TAZ axis and promotion of TAZ nuclear translocation using Zinc01442821 enhances fracture healing and alleviates delayed union or nonunion induced by mechanical unloading. Conclusion: Our study reveals that Ctsk+ PSPCs within the callus can sense mechanical forces through the PC1-TAZ axis, targeting which represents great therapeutic potential for delayed fracture union or nonunion.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Condrocitos , Curación de Fractura , Osteogénesis , Células Madre , Canales Catiónicos TRPP , Animales , Curación de Fractura/fisiología , Ratones , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/genética , Condrocitos/metabolismo , Células Madre/metabolismo , Osteogénesis/fisiología , Ratones Noqueados , Condrogénesis/fisiología , Periostio/metabolismo , Osteoblastos/metabolismo , Osteoblastos/fisiología , Modelos Animales de Enfermedad , Masculino
20.
Cell Death Dis ; 15(4): 271, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632264

RESUMEN

Diabetes, a group of metabolic disorders, constitutes an important global health problem. Diabetes and its complications place a heavy financial strain on both patients and the global healthcare establishment. The lack of effective treatments contributes to this pessimistic situation and negative outlook. Exosomes released from mesenchymal stromal cells (MSCs) have emerged as the most likely new breakthrough and advancement in treating of diabetes and diabetes-associated complication due to its capacity of intercellular communication, modulating the local microenvironment, and regulating cellular processes. In the present review, we briefly outlined the properties of MSCs-derived exosomes, provided a thorough summary of their biological functions and potential uses in diabetes and its related complications.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus , Exosomas , Células Madre Mesenquimatosas , Humanos , Exosomas/metabolismo , Complicaciones de la Diabetes/metabolismo , Comunicación Celular , Células Madre Mesenquimatosas/metabolismo , Resultado del Tratamiento , Diabetes Mellitus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...