Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Transl Med ; 22(1): 596, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38926764

RESUMEN

BACKGROUND: Existing studies have found that circular RNAs (circRNAs) act as sponges for micro RNAs (miRNAs) to control downstream genes. However, the specific functionalities and mechanisms of circRNAs in human clear cell renal cell carcinoma (ccRCC) have yet to be thoroughly investigated. METHODS: Patient cohorts from online databases were used to screen candidate circRNAs, while another cohort from our hospital was obtained for validation. CircSOD2 was identified as a potential oncogenic target, and its relevant characteristics were investigated during ccRCC progression through various assays. A positive feedback loop containing downstream miRNA and its target gene were identified using bioinformatics and validated by luciferase reporter assays, RNA pull-down, and high-throughput sequencing. RESULTS: CircSOD2 expression was elevated in tumor samples and significantly correlated with overall survival (OS) and the tumor stage of ccRCC patients, which appeared in the enhanced proliferation, invasion, and migration of tumor cells. Through competitive binding to circSOD2, miR-532-3p can promote the expression of PAX5 and the progression of ccRCC, and such regulation can be salvaged by miR-532-3p inhibitor. CONCLUSION: A novel positive feedback loop, PAX5/circSOD2/miR-532-3p/PAX5 was identified in the study, indicating that the loop may play an important role in the diagnosis and prognostic prediction in ccRCC patients.


Asunto(s)
Carcinoma de Células Renales , Proliferación Celular , Retroalimentación Fisiológica , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , MicroARNs , ARN Circular , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Persona de Mediana Edad , Masculino , Carcinogénesis/genética , Carcinogénesis/patología , Movimiento Celular/genética , Factor de Transcripción PAX5/metabolismo , Factor de Transcripción PAX5/genética , Oncogenes/genética , Secuencia de Bases , Progresión de la Enfermedad , Invasividad Neoplásica , Reproducibilidad de los Resultados
2.
Oral Oncol ; 153: 106834, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718458

RESUMEN

OBJECTIVES: To meet the demand for personalized treatment, effective stratification of patients with metastatic nasopharyngeal carcinoma (mNPC) is essential. Hence, our study aimed to establish an M1 subdivision for prognostic prediction and treatment planning in patients with mNPC. MATERIALS AND METHODS: This study included 1239 patients with mNPC from three medical centers divided into the synchronous mNPC cohort (smNPC, n = 556) to establish an M1 stage subdivision and the metachronous mNPC cohort (mmNPC, n = 683) to validate this subdivision. The primary endpoint was overall survival. Univariate and multivariate Cox analyses identified covariates for the decision-tree model, proposing an M1 subdivision. Model performance was evaluated using time-dependent receiver operating characteristic curves, Harrell's concordance index, calibration plots, and decision curve analyses. RESULTS: The proposed M1 subdivisions were M1a (≤5 metastatic lesions), M1b (>5 metastatic lesions + absent liver metastases), and M1c (>5 metastatic lesions + existing liver metastases) with median OS of 34, 22, and 13 months, respectively (p < 0.001). This M1 subdivision demonstrated superior discrimination (C-index = 0.698; 3-year AUC = 0.707) and clinical utility over those of existing staging systems. Calibration curves exhibited satisfactory agreement between predictions and actual observations. Internal and mmNPC cohort validation confirmed the robustness. Survival benefits from local metastatic treatment were observed in M1a, while immunotherapy improved survival in patients with M1b and M1c disease. CONCLUSION: This novel M1 staging strategy provides a refined approach for prognostic prediction and treatment planning in patients with mNPC, emphasizing the potential benefits of local and immunotherapeutic interventions based on individualized risk stratification.


Asunto(s)
Árboles de Decisión , Carcinoma Nasofaríngeo , Humanos , Masculino , Femenino , Persona de Mediana Edad , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/mortalidad , Carcinoma Nasofaríngeo/terapia , Estudios Retrospectivos , Adulto , Estadificación de Neoplasias , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/mortalidad , Pronóstico , Anciano
3.
Crit Rev Biotechnol ; : 1-17, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710624

RESUMEN

Constipation is a common gastrointestinal condition, which may occur at any age and affects countless people. The search for new treatments for constipation is ongoing as current drug treatments fail to provide fully satisfactory results. In recent years, probiotics have attracted much attention because of their demonstrated therapeutic efficacy and fewer side effects than pharmaceutical products. Many studies attempted to answer the question of how probiotics can alleviate constipation. It has been shown that different probiotic strains can alleviate constipation by different mechanisms. The mechanisms on probiotics in relieving constipation were associated with various aspects, including regulation of the gut microbiota composition, the level of short-chain fatty acids, aquaporin expression levels, neurotransmitters and hormone levels, inflammation, the intestinal environmental metabolic status, neurotrophic factor levels and the body's antioxidant levels. This paper summarizes the perception of the mechanisms on probiotics in relieving constipation and provides some suggestions on new research directions.

4.
Small ; : e2312007, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708799

RESUMEN

Coordinated cell movement is a cardinal feature in tissue organization that highlights the importance of cells working together as a collective unit. Disruptions to this synchronization can have far-reaching pathological consequences, ranging from developmental disorders to tissue repair impairment. Herein, it is shown that metal oxide nanoparticles (NPs), even at low and non-toxic doses (1 and 10 µg mL-1), can perturb the coordinated epithelial cell rotation (CECR) in micropatterned human epithelial cell clusters via distinct nanoparticle-specific mechanisms. Zinc oxide (ZnO) NPs are found to induce significant levels of intracellular reactive oxygen species (ROS) to promote mitogenic activity. Generation of a new localized force field through changes in the cytoskeleton organization and an increase in cell density leads to the arrest of CECR. Conversely, epithelial cell clusters exposed to titanium dioxide (TiO2) NPs maintain their CECR directionality but display suppressed rotational speed in an autophagy-dependent manner. Thus, these findings reveal that nanoparticles can actively hijack the nano-adaptive responses of epithelial cells to disrupt the fundamental mechanics of cooperation and communication in a collective setting.

5.
Nat Commun ; 15(1): 891, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291026

RESUMEN

Procaspase 9 is the initiator caspase for apoptosis, but how its levels and activities are maintained remains unclear. The gigantic Inhibitor-of-Apoptosis Protein BIRC6/BRUCE/Apollon inhibits both apoptosis and autophagy by promoting ubiquitylation of proapoptotic factors and the key autophagic protein LC3, respectively. Here we show that BIRC6 forms an anti-parallel U-shaped dimer with multiple previously unannotated domains, including a ubiquitin-like domain, and the proapoptotic factor Smac/DIABLO binds BIRC6 in the central cavity. Notably, Smac outcompetes the effector caspase 3 and the pro-apoptotic protease HtrA2, but not procaspase 9, for binding BIRC6 in cells. BIRC6 also binds LC3 through its LC3-interacting region, probably following dimer disruption of this BIRC6 region. Mutation at LC3 ubiquitylation site promotes autophagy and autophagic degradation of BIRC6. Moreover, induction of autophagy promotes autophagic degradation of BIRC6 and caspase 9, but not of other effector caspases. These results are important to understand how the balance between apoptosis and autophagy is regulated under pathophysiological conditions.


Asunto(s)
Apoptosis , Proteínas Inhibidoras de la Apoptosis , Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Caspasas/metabolismo , Autofagia/genética , Ubiquitinación , Proteínas Mitocondriales/metabolismo
6.
Eur J Neurosci ; 59(3): 333-357, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38221677

RESUMEN

Single-cell transcriptomics analysis is an advanced technology that can describe the intracellular transcriptome in complex tissues. It profiles and analyses datasets by single-cell RNA sequencing. Neurodegenerative diseases are identified by the abnormal apoptosis of neurons in the brain with few or no effective therapy strategies at present, which has been a growing healthcare concern and brought a great burden to society. The transcriptome of individual cells provides deep insights into previously unforeseen cellular heterogeneity and gene expression differences in neurodegenerative disorders. It detects multiple cell subsets and functional changes during pathological progression, which deepens the understanding of the molecular underpinnings and cellular basis of neurodegenerative diseases. Furthermore, the transcriptome analysis of immune cells shows the regulation of immune response. Different subtypes of immune cells and their interaction are found to contribute to disease progression. This finding enables the discovery of novel targets and biomarkers for early diagnosis. In this review, we emphasize the principles of the technology, and its recent progress in the study of cellular heterogeneity and immune mechanisms in neurodegenerative diseases. The application of single-cell transcriptomics analysis in neurodegenerative disorders would help explore the pathogenesis of these diseases and develop novel therapeutic methods.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Encéfalo/metabolismo
7.
Neuroscience ; 537: 12-20, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38036057

RESUMEN

The lateral parabrachial nucleus (LPBN) is known to play a key role in relaying noxious information from the spinal cord to the brain. Different LPBN efferent mediate different aspects of the nocifensive response. However, the function of the LPBN â†’ lateral hypothalamus (LH) circuit in response to noxious stimuli has remained unknown. Here, we show that LPBN â†’ LH circuit is activated by noxious stimuli. Interestingly, either activation or inhibition of this circuit induced analgesia. Optogenetic activation of LPBN afferents in the LH elicited spontaneous jumping and induced place aversion. Optogenetic inhibition inhibited jumping behavior to noxious heat. Ablation of LH glutamatergic neurons could abolish light-evoked analgesia and jumping behavior. Our study revealed a role for the LPBN â†’ LH pathway in nocifensive behaviors.


Asunto(s)
Área Hipotalámica Lateral , Núcleos Parabraquiales , Humanos , Núcleos Parabraquiales/fisiología , Dolor/metabolismo , Encéfalo , Neuronas/metabolismo
8.
Biomed Pharmacother ; 169: 115859, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37948993

RESUMEN

Protein posttranslational modification regulates synaptic protein stability, sorting and trafficking, and is involved in emotional disorders. Yet the molecular mechanisms regulating emotional disorders remain unelucidated. Here we report unknown roles of protein palmitoylation/nitrosylation crosstalk in regulating anxiety-like behaviors in rats. According to the percentages of open arm duration in the elevated plus maze test, the rats were divided into high-, intermediate- and low-anxiety groups. The palmitoylation and nitrosylation levels were detected by acyl-biotin exchange assay, and we found low palmitoylation and high nitrosylation levels in the basolateral amygdala (BLA) of high-anxiety rats. Furthermore, we observed that 2-bromopalmitate (2-BP), a palmitoylation inhibitor, induced anxiety-like behaviors, accompanied with decreased amplitude and frequency of mEPSCs and mIPSCs in the BLA. Additionally, we also found that inhibiting nNOS activity with 7-nitroindazole (7-NI) in the BLA caused anxiolytic effects and reduced the synaptic transmission. Interestingly, diazepam (DZP) rapidly elevated the protein palmitoylation level and attenuated the protein nitrosylation level in the BLA. Specifically, similar to DZP, the voluntary wheel running exerted DZP-like anxiolytic action, and induced high palmitoylation and low nitrosylation levels in the BLA. Lastly, blocking the protein palmitoylation with 2-BP induced an increase in protein nitrosylation level, and attenuating the nNOS activity by 7-NI elevated the protein palmitoylation level. Collectively, these results show a critical role of protein palmitoylation/nitrosylation crosstalk in orchestrating anxiety behavior in rats, and it may serve as a potential target for anxiolytic intervention.


Asunto(s)
Ansiolíticos , Complejo Nuclear Basolateral , Ratas , Animales , Complejo Nuclear Basolateral/metabolismo , Ansiolíticos/farmacología , Lipoilación , Actividad Motora , Ansiedad/metabolismo , Diazepam/farmacología
9.
Environ Sci Technol ; 57(48): 19223-19235, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37933439

RESUMEN

Insights into how biological systems respond to high- and low-dose acute environmental stressors are a fundamental aspect of exposome research. However, studying the impact of low-level environmental exposure in conventional in vitro settings is challenging. This study employed a three-dimensional (3D) biomimetic microfluidic lung-on-chip (µLOC) platform and RNA-sequencing to examine the effects of two model anthropogenic engineered nanoparticles (NPs): zinc oxide nanoparticles (Nano-ZnO) and copier center nanoparticles (Nano-CCP). The airway epithelium exposed to these NPs exhibited dose-dependent increases in cytotoxicity and barrier dysregulation (dominance of the external exposome). Interestingly, even nontoxic and low-level exposure (10 µg/mL) of the epithelium compartment to Nano-ZnO triggered chemotaxis of lung fibroblasts toward the epithelium. An increase in α smooth muscle actin (α-SMA) expression and contractile activity was also observed in these cells, indicating a bystander-like adaptive response (dominance of internal exposome). Further bioinformatics and network analysis showed that a low-dose Nano-ZnO significantly induced a robust transcriptomic response and upregulated several hub genes associated with the development of lung fibrosis. We propose that Nano-ZnO, even at a no observable effect level (NOEL) dose according to conventional standards, can function as a potent nanostressor to disrupt airway epithelium homeostasis. This leads to a cascade of profibrotic events in a cross-tissue compartment fashion. Our findings offer new insights into the early acute events of respiratory harm associated with environmental NPs exposure, paving the way for better exposomic understanding of this emerging class of anthropogenic nanopollutants.


Asunto(s)
Exposoma , Nanopartículas , Óxido de Zinc , Biomimética , Microfluídica , Nanopartículas/toxicidad , Fibroblastos , Óxido de Zinc/toxicidad
10.
Open Biol ; 13(10): 230148, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37788707

RESUMEN

Diatoms are ancestrally photosynthetic microalgae. However, some underwent a major evolutionary transition, losing photosynthesis to become obligate heterotrophs. The molecular and physiological basis for this transition is unclear. Here, we isolate and characterize new strains of non-photosynthetic diatoms from the coastal waters of Singapore. These diatoms occupy diverse ecological niches and display glucose-mediated catabolite repression, a classical feature of bacterial and fungal heterotrophs. Live-cell imaging reveals deposition of secreted extracellular polymeric substance (EPS). Diatoms moving on pre-existing EPS trails (runners) move faster than those laying new trails (blazers). This leads to cell-to-cell coupling where runners can push blazers to make them move faster. Calibrated micropipettes measure substantial single-cell pushing forces, which are consistent with high-order myosin motor cooperativity. Collisions that impede forward motion induce reversal, revealing navigation-related force sensing. Together, these data identify aspects of metabolism and motility that are likely to promote and underpin diatom heterotrophy.


Asunto(s)
Diatomeas , Diatomeas/fisiología , Matriz Extracelular de Sustancias Poliméricas , Fotosíntesis , Bacterias , Ecosistema
11.
Int J Biol Macromol ; 241: 124513, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37086774

RESUMEN

Natural taste/flavor enhancers are essential ingredients that could potentially address condiments overconsumption. For the first time, we report that hyaluronic acid (HA) could modulate taste perception, governed by the dynamic interactions among taste compounds, mucin, and HA. Various conformations of HA impact taste perception. The high molecular weight (Mw) of 1090 kDa HA inhibits the sense of taste due to its increased viscosity, which hinders the penetration of Na+ into the mucin layer. HA with low and medium Mw (100 kDa, 400 kDa) could enhance taste perception. Isothermal titration calorimetry analysis confirms the stronger binding between mucin and HA. The intensity of their interaction increases as the Mw of HA increases from 8 kDa to 400 kDa. Quartz crystal microbalance with dissipation characterization further indicates that the rigid conformation of 100 kDa HA facilitates the binding of Na+ with taste receptors, thereby enhancing taste perception. The flexible conformation of 400 kDa HA may conceal the taste receptor cells, reducing taste enhancement. Our work advances the understanding of conformational entropy of natural mucoadhesion and mucopenetration polymers, which lays the foundation for their potential use as taste enhancers.


Asunto(s)
Ácido Hialurónico , Gusto , Ácido Hialurónico/química , Entropía , Percepción del Gusto , Mucinas
12.
Probiotics Antimicrob Proteins ; 15(2): 400-410, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36459386

RESUMEN

Bacterial vaginosis (BV) is a common vaginal disease associated with abnormal changes in the vaginal microbiome. Our previous study found that Lactobacillus rhamnosus has a good therapeutic effect on bacterial vaginosis by inhibiting the most prominent bacterium associated with BV, Gardnerella vaginalis. In this study, we show that acetic acid and lactic acid are the main substances in the cell-free supernatant (CFS) of L. rhamnosus that inhibit the growth of G. vaginalis. Further study on the mechanism showed that acetic acid and lactic acid alter the morphology of the G. vaginalis cells, eventually causing the cells to shrink or burst, resulting in exudation of their intracellular contents. In addition, these two organic acids also dissipate the membrane potential of bacterial cells, affecting their synthesis of ATP. A reduced activity of the Na+/K+-ATPase leads to abnormal ATP metabolism, and ultimately inhibits the growth and reproduction of G. vaginalis. Our study provides valuable information for the widespread application of L. rhamnosus in the treatment of bacterial vaginosis.


Asunto(s)
Antiinfecciosos , Lacticaseibacillus rhamnosus , Vaginosis Bacteriana , Humanos , Femenino , Gardnerella vaginalis , Vaginosis Bacteriana/tratamiento farmacológico , Vaginosis Bacteriana/microbiología , Vagina/microbiología , Ácido Acético , Adenosina Trifosfato
13.
Int J Med Sci ; 19(11): 1715-1723, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36237985

RESUMEN

Objective: This study aimed to analyze the efficacy of autologous peripheral blood stem cell transplantation for high-risk neuroblastoma in China. Methods: The data of 90 high-risk neuroblastoma patients treated with the CCCG-NB 2015 regimen were reviewed. The baseline clinicopathological characteristics and prognosis were analyzed and compared. In addition, the prognoses of tandem autologous stem cell transplantation and single autologous stem cell transplantation groups were compared. Results: The results of survival analysis showed that autologous peripheral blood stem cell transplantation based on this pretreatment regimen significantly improved the prognosis of children in the high-risk group. The 3-year event-free survival (EFS) and overall survival (OS) rates for the transplantation group and the nontransplantation group were 65.5% vs. 41.3% (p=0.023) and 77.1% vs. 57.9% (p=0.03), respectively. There was no difference in the distribution of baseline clinical case characteristics between the single transplantation group and the tandem transplantation group (p>0.05), and there was no significant difference in EFS and OS between the two groups (p>0.05). Conclusion: Based on this pretreatment programme, autologous peripheral blood stem cell transplantation is safe and tolerable and significantly improves the prognosis of children in the high-risk group. The value of tandem autologous stem cell transplantation is worthy of further discussion, which should consider various aspects such as the transplantation medication regimen and the patient's state.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Neuroblastoma , Trasplante de Células Madre de Sangre Periférica , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Niño , Supervivencia sin Enfermedad , Humanos , Neuroblastoma/patología , Pronóstico , Trasplante Autólogo
14.
Artículo en Inglés | MEDLINE | ID: mdl-36045664

RESUMEN

Background: Acetaminophen-related hepatic injury (ARHI) is a kind of acute hepatic injury caused by overdosing acetaminophen, which is mainly related to toxic metabolite production, oxidative stress, and mitochondrial dysfunction. The extract of Paederia scandens (Lour.) Merr. (PSM) has the abilities of anti-inflammatory, antivirus, and antioxidation. Research studies showed that PSM could improve acute or chronic hepatic injury, while the mechanism of which is still indistinct. Methods: Here, the authors applied the approach based on serum metabonomics combined with network pharmacology to study the protection of PSM on ARHI rats. Results: 10 serum potential biomarkers were found to be closely related to ARHI by metabonomics, while 3 compounds (L-ascorbyl 2,6-dipalmitate, squalene, and tributyl O-acetylcitrate) and 3 targets (NOS2, MAOB, and PDE3A) were found that might be the potential active components and active site of PSM on treating ARHI by network pharmacology analysis. Furthermore, molecular biology strategy was performed to validate whether iNOS/NF-κB signaling pathway is the potential mechanism of PSM treating ARHI. Conclusions: This study indicated that PSM could ameliorate ARHI by iNOS/NF-κB signaling pathway. During ARHI treatment by PSM, L-ascorbyl 2, 6-dipalmitate, squalene, and tributyl O-acetylcitrate might be the potential active components, while the possible active site might be NOS2, MAOB, and PDE3A.

15.
ACS Nano ; 16(8): 12049-12060, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35939084

RESUMEN

Organic electrochemical transistors (OECTs) have recently attracted attention due to their high transconductance and low operating voltage, which makes them ideal for a wide range of biosensing applications. Poly-3,4-ethylenedioxythiophene:poly-4-styrenesulfonate (PEDOT:PSS) is a typical material used as the active channel layer in OECTs. Pristine PEDOT:PSS has poor electrical conductivity, and additives are typically introduced to improve its conductivity and OECT performance. However, these additives are mostly either toxic or not proven to be biocompatible. Herein, a biocompatible ionic liquid [MTEOA][MeOSO3] is demonstrated to be an effective additive to enhance the performance of PEDOT:PSS-based OECTs. The influence of [MTEOA][MeOSO3] on the conductivity, morphology, and redox process of PEDOT:PSS is investigated. The PEDOT:PSS/[MTEOA][MeOSO3]-based OECT exhibits high transconductance (22.3 ± 4.5 mS µm-1), high µC* (the product of mobility µ and volumetric capacitance C*) (283.80 ± 29.66 F cm-1 V-1 s-1), fast response time (∼40.57 µs), and excellent switching cyclical stability. Next, the integration of sodium (Na+) and potassium (K+) ion-selective membranes with the OECTs is demonstrated, enabling selective ion detection in the physiological range. In addition, flexible OECTs are designed for electrocardiography (ECG) signal acquisition. These OECTs have shown robust performance against physical deformation and successfully recorded high-quality ECG signals.


Asunto(s)
Técnicas Biosensibles , Líquidos Iónicos , Poliestirenos , Capacidad Eléctrica , Iones
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121490, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35691168

RESUMEN

Hypochlorous acid/hypochlorite (HOCl/ClO-) plays important roles in killing bacterial and causing damage to living tissues, and its abnormal levels could lead to many diseases. Although great efforts have been devoted, fluorescent probes for HOCl/ClO- with near-infrared fluorescence, good selectivity/sensitivity, and low background are still important and urgent. In this work, a novel double-bond-linked TCF-aza-BODIPY-based near-infrared fluorescent probe (3) was rationally designed, successfully prepared, and applied for sensing HOCl/ClO- in both solutions and living RAW264.7 cells, showing good selectivity and fluorescence "turn-on" phenomenon at 670 nm with low background. The limit of detection towards ClO- was determined to be 0.36 µM through the linear fluorescence changes at 670 nm in a broad ClO--concentration range of 0-150 µM. Furthermore, the sensing mechanism was investigated by mass spectrometry and compared with 1, suggesting that the remarkable spectroscopic changes could be ascribed to the oxidization of the double bond to the aldehyde group, accompanied with the leaving of the TCF group. Confocal imaging experiments also confirmed the remarkable intracellular fluorescence enhancements through incubation of ClO- and phorbol ester 12-myristate 13-acetate (PMA) in RAW264.7 cells. Therefore, for the first time, we reported a near-infrared TCF-aza-BODIPY-based fluorescent probe for highly sensitive and fluorescence "turn-on" detection of both exogenous and endogenous HOCl in living RAW264.7 cells through the quick oxidation of a conjugated double bond.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Compuestos de Boro/química , Colorantes Fluorescentes/química , Ácido Hipocloroso/análisis , Microscopía Fluorescente/métodos
17.
J Neurosci ; 42(13): 2662-2677, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35165175

RESUMEN

Palmitoylation may be relevant to the processes of learning and memory, and even disorders, such as post-traumatic stress disorder and aging-related cognitive decline. However, underlying mechanisms of palmitoylation in these processes remain unclear. Herein, we used acyl-biotin exchange, coimmunoprecipitation and biotinylation assays, and behavioral and electrophysiological methods, to explore whether palmitoylation is required for hippocampal synaptic transmission and fear memory formation, and involved in functional modification of synaptic proteins, such as postsynapse density-95 (PSD-95) and glutamate receptors, and detected if depalmitoylation by specific enzymes has influence on glutamatergic synaptic plasticity. Our results showed that global palmitoylation level, palmitoylation of PSD-95 and glutamate receptors, postsynapse density localization of PSD-95, surface expression of AMPARs, and synaptic strength of cultured hippocampal neurons were all enhanced by TTX pretreatment, and these can be reversed by inhibition of palmitoylation with palmitoyl acyl transferases inhibitors, 2-bromopalmitate and N-(tert-butyl) hydroxylamine hydrochloride. Importantly, we also found that acyl-protein thioesterase 1 (APT1)-mediated depalmitoylation is involved in palmitoylation of PSD-95 and glutamatergic synaptic transmission. Knockdown of APT1, not protein palmitoyl thioesterase 1, with shRNA, or selective inhibition, significantly increased AMPAR-mediated synaptic strength, palmitoylation levels, and synaptic or surface expression of PSD-95 and AMPARs. Results from hippocampal tissues and fear-conditioned rats showed that palmitoylation is required for synaptic strengthening and fear memory formation. These results suggest that palmitoylation and APT1-mediated depalmitoylation have critical effects on the regulation of glutamatergic synaptic plasticity, and it may serve as a potential target for learning and memory-associated disorders.SIGNIFICANCE STATEMENT Fear-related anxiety disorders, including post-traumatic stress disorder, are prevalent psychiatric conditions, and fear memory is associated with hyperexcitability in the hippocampal CA1 region. Palmitoylation is involved in learning and memory, but mechanisms coupling palmitoylation with fear memory acquisition remain poorly understood. This study demonstrated that palmitoylation is essential for postsynapse density-95 clustering and hippocampal glutamatergic synaptic transmission, and APT1-mediated depalmitoylation plays critical roles in the regulation of synaptic plasticity. Our study revealed that molecular mechanism about downregulation of APT1 leads to enhancement of AMPAR-mediated synaptic transmission, and that palmitoylation cycling is implicated in fear conditioning-induced synaptic strengthening and fear memory formation.


Asunto(s)
Hipocampo , Sinapsis , Animales , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal , Ratas , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
18.
Respir Res ; 22(1): 233, 2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34425812

RESUMEN

BACKGROUND: Ventilator-induced lung injury (VILI) is a common complication in the treatment of respiratory diseases with high morbidity and mortality. ETS-domain containing protein (Elk1) and Matrix metalloproteinase (MMP) 9 are involved in VILI, but the roles have not been fully elucidated. This study examined the mechanisms of the activation of MMP-9 and Elk1 regulating barrier function in VILI in vitro and in vivo. METHODS: For the in vitro study, Mouse lung epithelial cells (MLE-12) were pre-treated with Elk1 siRNA or MMP-9 siRNA for 48 h prior to cyclic stretch at 20% for 4 h. For the in vivo study, C57BL/6 mice were pre-treated with Elk1 siRNA or MMP-9 siRNA for 72 h prior to 4 h of mechanical ventilation. The expressions of Elk1, MMP-9, Tissue inhibitor of metalloproteinase 1 (TIMP-1), E-cadherin, and occludin were measured by Western blotting. The intracellular distribution of E-cadherin and occludin was shown by immunofluorescence. The degree of pulmonary edema and lung injury were evaluated by Hematoxylin-eosin (HE) staining, lung injury scores, Wet/Dry (W/D) weight ratio, total cell counts, and Evans blue dye. RESULTS: 20% cyclic stretch and high tidal volume increases the expressions of Elk1, MMP-9, and TIMP-1, increases the ratio of MMP-9/TIMP-1, decreases the E-cadherin and occludin level. Elk1 siRNA or MMP-9 siRNA reverses the degradations of E-cadherin, occludin, and the ratio of MMP-9/TIMP-1 caused by cyclic stretch. Elk1 siRNA decreases the MMP-9 level with or not 20% cyclic stretch and high tidal volume. CONCLUSIONS: The results demonstrate mechanical stretch damages the tight junctions and aggravates the permeability in VILI, Elk1 plays an important role in affecting the tight junctions and permeability by regulating the balance of MMP-9 and TIMP-1, thus indicating the therapeutic potential of Elk1 to treat VILI.


Asunto(s)
Cadherinas/biosíntesis , Metaloproteinasa 9 de la Matriz/biosíntesis , Ocludina/biosíntesis , Respiración Artificial/efectos adversos , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Proteína Elk-1 con Dominio ets/biosíntesis , Animales , Cadherinas/análisis , Células Cultivadas , Masculino , Metaloproteinasa 9 de la Matriz/análisis , Ratones , Ratones Endogámicos C57BL , Ocludina/análisis , Uniones Estrechas/metabolismo , Uniones Estrechas/patología , Lesión Pulmonar Inducida por Ventilación Mecánica/patología , Proteína Elk-1 con Dominio ets/análisis
19.
Dev Cell ; 56(6): 761-780.e7, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33725480

RESUMEN

Vinculin, a mechanotransducer associated with both adherens junctions (AJs) and focal adhesions (FAs), plays a central role in force transmission through cell-cell and cell-substratum contacts. We generated the conditional knockout (cKO) of vinculin in murine skin that results in the loss of bulge stem cell (BuSC) quiescence and promotes continual cycling of the hair follicles. Surprisingly, we find that the AJs in vinculin cKO cells are mechanically weak and impaired in force generation despite increased junctional expression of E-cadherin and α-catenin. Mechanistically, we demonstrate that vinculin functions by keeping α-catenin in a stretched/open conformation, which in turn regulates the retention of YAP1, another potent mechanotransducer and regulator of cell proliferation, at the AJs. Altogether, our data provide mechanistic insights into the hitherto-unexplored regulatory link between the mechanical stability of cell junctions and contact-inhibition-mediated maintenance of BuSC quiescence.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Uniones Adherentes/fisiología , Folículo Piloso/fisiología , Mecanotransducción Celular , Células Madre/fisiología , Vinculina/fisiología , alfa Catenina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Adhesión Celular , Femenino , Folículo Piloso/citología , Masculino , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre/citología , Proteínas Señalizadoras YAP , alfa Catenina/genética
20.
BMC Anesthesiol ; 21(1): 22, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33472587

RESUMEN

BACKGROUND: Post-spinal anesthesia hypotension during cesarean delivery is caused by decreased systemic vascular resistance due to the blockage of the autonomic nerves, which is further worsened by inferior vena cava (IVC) compression by the gravid uterus. This study aimed to assess whether peak velocity and diameter of the IVC below the xiphoid or right common femoral vein (RCFV) in the inguinal region, as measured on ultrasound, could reflect the degree of IVC compression and further identify parturients at risk of post-spinal hypotension. METHODS: Fifty-six parturients who underwent elective cesarean section with spinal anesthesia were included in this study; peak velocities and anteroposterior diameters of the IVC and peak velocities and transverse diameters of the RCFV were measured using ultrasound before anesthesia. The primary outcome was the ultrasound measurements of IVC and RCFV acquired before spinal anesthesia and their association with post-spinal hypotension. Hypotension was defined as a drop in systolic arterial pressure by > 20% from the baseline. Multinomial logistic regression analysis was used to identify the association between the measurements of IVC, RCFV, and post-spinal hypotension during cesarean delivery. Receiver operating characteristic curves were used to test the abilities of the identified parameters to predict post-spinal hypotension; the areas under the curve and optimum cut-off values for the predictive parameters were calculated. RESULTS: A longer transverse diameter of the RCFV was associated with the occurrence of post-spinal hypotension (odds ratio = 2.022, 95% confidence interval [CI] 1.261-3.243). The area under the receiver operating characteristics curve for the prediction of post-spinal hypotension was 0.759 (95% CI 0.628-0.890, P = 0.001). A transverse diameter of > 12.2 mm of the RCFV could predict post-spinal hypotension during cesarean delivery. CONCLUSIONS: A longer transverse diameter of RCFV was associated with hypotension and could predict parturients at a major risk of hypotension before anesthesia. TRIAL REGISTRATION: This study was registered at http://www.chictr.org.cn on 16, May, 2018. No. ChiCTR1800016163 .


Asunto(s)
Anestesia Raquidea/métodos , Cesárea , Vena Femoral/anatomía & histología , Hipotensión/diagnóstico , Complicaciones Intraoperatorias/diagnóstico , Cuidados Preoperatorios/métodos , Ultrasonografía/métodos , Adolescente , Adulto , Anestesia Obstétrica , Femenino , Vena Femoral/diagnóstico por imagen , Humanos , Hipotensión/fisiopatología , Complicaciones Intraoperatorias/fisiopatología , Valor Predictivo de las Pruebas , Embarazo , Medición de Riesgo , Posición Supina , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...