Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Mol Biol Rep ; 48(12): 8249-8253, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34643926

RESUMEN

BACKGROUND: Estimating outcrossing/selfing rates and characterizing genetic diversity with microsatellite markers are crucial to understanding the evolution of plant mating systems. METHODS AND RESULTS: We developed, optimized and characterized eight new primer pairs for Centaurium grandiflorum ssp. boissieri and transferred them to three subspecies of Centaurium quadrifolium. Two SSR loci were transferred from Sabatia campestris to the four Centaurium taxa. Polymorphisms, He, Ho and H-W deviations were estimated in two populations of C. grandiflorum ssp. boissieri and in seven individuals each of C. quadrifolium ssp. barrelieri, C. quadrifolium ssp. parviflorum and C. quadrifolium ssp. quadrifolium. A total of 80 individuals was used in these experiments. The number of polymorphic loci varied among species from one to ten. A total of 127 alleles was scored. The average number of alleles per locus was 12.7. He was higher than Ho in all sampled populations. Hardy-Weinberg equilibrium was found for some loci in different species. CONCLUSIONS: This is the first report of microsatellites successfully amplified in the whole Centaurium genus. They will be valuable for estimating mating system parameters and genetic diversity and exploring their relationships with the wide variation in flower morphology in the genus, especially anther-stigma separation.


Asunto(s)
Centaurium/genética , Repeticiones de Microsatélite/genética , Alelos , Flores/genética , Sitios Genéticos , Variación Genética , Hibridación Genética , Polimorfismo Genético
2.
Front Plant Sci ; 12: 650551, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777084

RESUMEN

The Mediterranean region is one of the most important worldwide hotspots in terms of number of species and endemism, and multiple hypotheses have been proposed to explain how diversification occurred in this area. The contribution of different traits to the diversification process has been evaluated in different groups of plants. In the case of Centaurium (Gentianaceae), a genus with a center of diversity placed in the Mediterranean region, polyploidy seems to have been an important driver of diversification as more than half of species are polyploids. Moreover, ploidy levels are strongly geographically structured across the range of the genus, with tetraploids distributed towards more temperate areas in the north and hexaploids in more arid areas towards the south. We hypothesize that the diversification processes and biodiversity patterns in Centaurium are explained by the coupled formation of polyploid lineages and the colonization of different areas. A MCC tree from BEAST2 based on three nuclear DNA regions of a total of 26 taxa (full sampling, of 18 species and 8 subspecies) was used to perform ancestral area reconstruction analysis in "BioGeoBEARS." Chromosome evolution was analyzed in chromEvol and diversification in BAMM to estimate diversification rates. Our results suggest that two major clades diverged early from the common ancestor, one most likely in the western Mediterranean and the other in a widespread area including west and central Asia (but with high uncertainty in the exact composition of this widespread area). Most ancestral lineages in the western clade remained in or around the western Mediterranean, and dispersal to other areas (mainly northward and eastward), occurred at the tips. Contrarily, most ancestral lineages in the widespread clade had larger ancestral areas. Polyploidization events in the western clade occurred at the tips of the phylogeny (with one exception of a polyploidization event in a very shallow node) and were mainly tetraploid, while polyploidization events occurred in the widespread clade were at the tips and in an ancestral node of the phylogeny, and were mainly hexaploid. We show how ancestral diploid lineages remained in the area of origin, whereas recent and ancestral polyploidization could have facilitated colonization and establishment in other areas.

3.
PeerJ ; 9: e10698, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777507

RESUMEN

Plant mating system determines, to a great extent, the demographic and genetic properties of populations, hence their potential for adaptive evolution. Variation in plant mating system has been documented between phylogenetically related species as well between populations of a species. A common evolutionary transition, from outcrossing to selfing, is likely to occur under environmental spatial variation in the service of pollinators. Here, we studied two phenotypically (in floral traits) and genetically (in neutral molecular markers) differentiated populations of the annual, insect-pollinated, plant Datura inoxia in Mexico, that differ in the service of pollinators (Mapimí and Cañada Moreno). First, we determined the populations' parameters of phenotypic in herkogamy, outcrossing and selfing rates with microsatellite loci, and assessed between generation (adults and seedlings) inbreeding, and inbreeding depression. Second, we compared the relationships between parameters in each population. Results point strong differences between populations: plants in Mapimí have, on average, approach herkogamy, higher outcrossing rate (t m = 0.68), lower primary selfing rate (r = 0.35), and lower inbreeding at equilibrium (F e = 0.24) and higher inbreeding depression (δ = 0.25), than the populations of Cañada. Outcrossing seems to be favored in Mapimí while selfing in Cañada. The relationship between r and F e were negatively associated with herkogamy in Mapimí; here, progenies derived from plants with no herkogamy or reverse herkogamy had higher selfing rate and inbreeding coefficient than plants with approach herkogamy. The difference F e-F is positively related to primary selfing rate (r) only in Cañada Moreno which suggests inbreeding depression in selfing individuals and then genetic purging. In conclusion, mating system evolution may occur differentially among maternal lineages within populations of Datura inoxia, in which approach herkogamy favors higher outcrossing rates and low levels of inbreeding and inbreeding depression, while no herkogamy or reverse herkogamy lead to the evolution of the "selfing syndrome" following the purge of deleterious alleles despite high inbreeding among individuals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA