RESUMEN
AIMS/HYPOTHESIS: A strategy to enhance pancreatic islet functional beta cell mass (BCM) while restraining inflammation, through the manipulation of molecular and cellular targets, would provide a means to counteract the deteriorating glycaemic control associated with diabetes mellitus. The aims of the current study were to investigate the therapeutic potential of such a target, the islet-enriched and diabetes-linked transcription factor paired box 4 (PAX4), to restrain experimental autoimmune diabetes (EAD) in the RIP-B7.1 mouse model background and to characterise putative cellular mechanisms associated with preserved BCM. METHODS: Two groups of RIP-B7.1 mice were genetically engineered to: (1) conditionally express either PAX4 (BPTL) or its diabetes-linked mutant variant R129W (mutBPTL) using doxycycline (DOX); and (2) constitutively express luciferase in beta cells through the use of RIP. Mice were treated or not with DOX, and EAD was induced by immunisation with a murine preproinsulin II cDNA expression plasmid. The development of hyperglycaemia was monitored for up to 4 weeks following immunisation and alterations in the BCM were assessed weekly by non-invasive in vivo bioluminescence intensity (BLI). In parallel, BCM, islet cell proliferation and apoptosis were evaluated by immunocytochemistry. Alterations in PAX4- and PAX4R129W-mediated islet gene expression were investigated by microarray profiling. PAX4 preservation of endoplasmic reticulum (ER) homeostasis was assessed using thapsigargin, electron microscopy and intracellular calcium measurements. RESULTS: PAX4 overexpression blunted EAD, whereas the diabetes-linked mutant variant PAX4R129W did not convey protection. PAX4-expressing islets exhibited reduced insulitis and decreased beta cell apoptosis, correlating with diminished DNA damage and increased islet cell proliferation. Microarray profiling revealed that PAX4 but not PAX4R129W targeted expression of genes implicated in cell cycle and ER homeostasis. Consistent with the latter, islets overexpressing PAX4 were protected against thapsigargin-mediated ER-stress-related apoptosis. Luminal swelling associated with ER stress induced by thapsigargin was rescued in PAX4-overexpressing beta cells, correlating with preserved cytosolic calcium oscillations in response to glucose. In contrast, RNA interference mediated repression of PAX4-sensitised MIN6 cells to thapsigargin cell death. CONCLUSIONS/INTERPRETATION: The coordinated regulation of distinct cellular pathways particularly related to ER homeostasis by PAX4 not achieved by the mutant variant PAX4R129W alleviates beta cell degeneration and protects against diabetes mellitus. The raw data for the RNA microarray described herein are accessible in the Gene Expression Omnibus database under accession number GSE62846.
Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , Factores de Transcripción Paired Box/metabolismo , Animales , Apoptosis/fisiología , Proliferación Celular/fisiología , Diabetes Mellitus Tipo 1/patología , Femenino , Células Secretoras de Insulina/patología , Masculino , Ratones , Ratones MutantesRESUMEN
PAX4 is a key regulator of pancreatic islet development whilst in adult acute overexpression protects ß-cells against stress-induced apoptosis and stimulates proliferation. Nonetheless, sustained PAX4 expression promotes ß-cell dedifferentiation and hyperglycemia, mimicking ß-cell failure in diabetic patients. Herein, we study mechanisms that allow stringent PAX4 regulation endowing favorable ß-cell adaptation in response to changing environment without loss of identity. To this end, PAX4 expression was monitored using a mouse bearing the enhanced green fluorescent protein (GFP) and cre recombinase construct under the control of the islet specific pax4 promoter. GFP was detected in 30% of islet cells predominantly composed of PAX4-enriched ß-cells that responded to glucose-induced insulin secretion. Lineage tracing demonstrated that all islet cells were derived from PAX4(+) progenitor cells but that GFP expression was confined to a subpopulation at birth which declined with age correlating with reduced replication. However, this GFP(+) subpopulation expanded during pregnancy, a state of active ß-cell replication. Accordingly, enhanced proliferation was exclusively detected in GFP(+) cells consistent with cell cycle genes being stimulated in PAX4-overexpressing islets. Under stress conditions, GFP(+) cells were more resistant to apoptosis than their GFP(-) counterparts. Our data suggest PAX4 defines an expandable ß-cell sub population within adult islets.
Asunto(s)
Apoptosis/fisiología , Regulación de la Expresión Génica/fisiología , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/citología , Factores de Transcripción Paired Box/metabolismo , Animales , Desdiferenciación Celular/fisiología , Linaje de la Célula , Proliferación Celular/fisiología , Diabetes Mellitus/patología , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Hiperglucemia/patología , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/clasificación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Transcripción Paired Box/genética , Regiones Promotoras Genéticas/genéticaRESUMEN
Successful normalization of blood glucose in patients transplanted with pancreatic islets isolated from cadaveric donors established the proof-of-concept that Type 1 Diabetes Mellitus is a curable disease. Nonetheless, major caveats to the widespread use of this cell therapy approach have been the shortage of islets combined with the low viability and functional rates subsequent to transplantation. Gene therapy targeted to enhance survival and performance prior to transplantation could offer a feasible approach to circumvent these issues and sustain a durable functional ß-cell mass in vivo. However, efficient and safe delivery of nucleic acids to intact islet remains a challenging task. Here we describe a simple and easy-to-use lentiviral transduction protocol that allows the transduction of approximately 80 % of mouse and human islet cells while preserving islet architecture, metabolic function and glucose-dependent stimulation of insulin secretion. Our protocol will facilitate to fully determine the potential of gene expression modulation of therapeutically promising targets in entire pancreatic islets for xenotransplantation purposes.