Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Bioenerg ; 1859(6): 434-444, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29540299

RESUMEN

The proposal that the respiratory complexes can associate with each other in larger structures named supercomplexes (SC) is generally accepted. In the last decades most of the data about this association came from studies in yeasts, mammals and plants, and information is scarce in other lineages. Here we studied the supramolecular association of the F1FO-ATP synthase (complex V) and the respiratory complexes I, III and IV of the colorless alga Polytomella sp. with an approach that involves solubilization using mild detergents, n-dodecyl-ß-D-maltoside (DDM) or digitonin, followed by separation of native protein complexes by electrophoresis (BN-PAGE), after which we identified oligomeric forms of complex V (mainly V2 and V4) and different respiratory supercomplexes (I/IV6, I/III4, I/IV). In addition, purification/reconstitution of the supercomplexes by anion exchange chromatography was also performed. The data show that these complexes have the ability to strongly associate with each other and form DDM-stable macromolecular structures. The stable V4 ATPase oligomer was observed by electron-microscopy and the association of the respiratory complexes in the so-called "respirasome" was able to perform in-vitro oxygen consumption.


Asunto(s)
Proteínas Algáceas/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Fosforilación Oxidativa , Volvocida/metabolismo , Proteínas Algáceas/genética , Detergentes/química , Digitonina/química , Transporte de Electrón , Complejo I de Transporte de Electrón/genética , Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Expresión Génica , Glucósidos/química , Mitocondrias/genética , Mitocondrias/metabolismo , Consumo de Oxígeno/fisiología , Unión Proteica , Volvocida/genética
2.
J Bioenerg Biomembr ; 49(6): 453-461, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29043530

RESUMEN

Subunit II of cytochrome c oxidase (Cox2) is usually encoded in the mitochondrial genome, synthesized in the organelle, inserted co-translationally into the inner mitochondrial membrane, and assembled into the respiratory complex. In chlorophycean algae however, the cox2 gene was split into the cox2a and cox2b genes, and in some algal species like Chlamydomonas reinhardtii and Polytomella sp. both fragmented genes migrated to the nucleus. The corresponding Cox2A and Cox2B subunits are imported into mitochondria forming a heterodimeric Cox2 subunit. When comparing the sequences of chlorophycean Cox2A and Cox2B proteins with orthodox Cox2 subunits, a C-terminal extension in Cox2A and an N-terminal extension in Cox2B were identified. It was proposed that these extensions favor the Cox2A/Cox2B interaction. In vitro studies carried out in this work suggest that the removal of the Cox2B extension only partially affects binding of Cox2B to Cox2A. We conclude that this extension is dispensable, but when present it weakly reinforces the Cox2A/Cox2B interaction.


Asunto(s)
Chlorophyta/enzimología , Complejo IV de Transporte de Electrones/química , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
3.
Biochim Biophys Acta ; 1817(5): 819-27, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22425815

RESUMEN

In the vast majority of eukaryotic organisms, the mitochondrial cox2 gene encodes subunit II of cytochrome c oxidase (COX2). However, in some lineages including legumes and chlorophycean algae, the cox2 gene migrated to the nucleus. Furthermore, in chlorophycean algae, this gene was split in two different units. Thereby the COX2 subunit is encoded by two independent nuclear genes, cox2a and cox2b, and mitochondria have to import the cytosol-synthesized COX2A and COX2B subunits and assemble them into the cytochrome c oxidase complex. In the chlorophycean algae Chlamydomonas reinhardtii and Polytomella sp., the COX2A precursor exhibits a long (130-140 residues), cleavable mitochondrial targeting sequence (MTS). In contrast, COX2B lacks an MTS, suggesting that mitochondria use different mechanisms to import each subunit. Here, we explored the in vitro import processes of both, the Polytomella sp. COX2A precursor and the COX2B protein. We used isolated, import-competent mitochondria from this colorless alga. Our results suggest that COX2B is imported directly into the intermembrane space, while COX2A seems to follow an energy-dependent import pathway, through which it finally integrates into the inner mitochondrial membrane. In addition, the MTS of the COX2A precursor is eliminated. This is the first time that the in vitro import of split COX2 subunits into mitochondria has been achieved.


Asunto(s)
Chlorophyta/enzimología , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Multimerización de Proteína , Subunidades de Proteína/metabolismo , Aldehído Deshidrogenasa/metabolismo , Animales , Núcleo Celular/enzimología , Membranas Mitocondriales/metabolismo , Modelos Biológicos , Péptidos/metabolismo , Precursores de Proteínas/metabolismo , Transporte de Proteínas , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA